Skip to main content

Application of Nanomaterials for DNA Sensing

  • Chapter
  • First Online:
Nucleic Acid Nanotechnology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 29))

Abstract

DNA sensing technology is taking advantage of the latest developments in materials science and in particular from the nanomaterial field. Because of the outstanding optical, electrical, and electrochemical qualities of nanomaterials, significant developments in the design of novel DNA sensing systems are being undertaken in the last years. Properties of nanoparticles such as light absorption and dispersion are bringing interesting DNA sensing alternatives. Electrochemical sensing techniques are also taking advantage of electrical properties of nanoparticles. In most cases nanoparticle-based DNA sensing systems are being offered as excellent screening and better alternatives to existing conventional strategies/assays with interest for point-of-care clinical analysis, food quality, safety, and security applications.

Future investigations in this area are directed to the searching of novel high sensitive and integrated platforms that include lateral-flow and lab on a chip-based sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13229

    CAS  Google Scholar 

  • Baeumner AJ, Pretz J, Fang S (2004) Universal nucleic acid sequence biosensor with nanomolar detection limits. Anal Chem 76:888–894

    PubMed  CAS  Google Scholar 

  • Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226–230

    PubMed  CAS  Google Scholar 

  • Bonanni A, Pividori MI, Campoy S, Barbé J, del Valle M (2009) Impedimetric detection of double-tagged PCR products using novel amplification procedures based on gold nanoparticles and Protein G. Analyst 134:602–608

    PubMed  CAS  Google Scholar 

  • Bonham AJ, Braun G, Pavel I, Moskovits M, Reich NO (2007) Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. J Am Chem Soc 129:14572–14573

    PubMed  CAS  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    PubMed  CAS  Google Scholar 

  • Cai H, Zhu N, Jiang Y, He P, Fang Y (2003) Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 18:1311–1319

    PubMed  CAS  Google Scholar 

  • Cao YWC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    PubMed  CAS  Google Scholar 

  • Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosen Bioelectron 22(9–10):1961–1967

    Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    PubMed  CAS  Google Scholar 

  • Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Niedbala RS, Tanke H (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin Chem 47:1885–1893

    PubMed  CAS  Google Scholar 

  • Coulter WH (1953) Means for counting particles suspended in a fluid. US Patent 2,656,508

    Google Scholar 

  • Coulter WH (1956) High speed automatic blood cell counter and cell size analyzer. Proc Natl Electron Conf 12:1034

    Google Scholar 

  • Dai Q, Liu X, Coutts J, Austin L, Huo Q (2008) A One-step highly sensitive method for DNA detection using dynamic light scattering. J Am Chem Soc 130:8138–8139

    PubMed  CAS  Google Scholar 

  • De la Escosura-Muñiz A, Merkoçi A (2010) Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. Chem Commun 46:9007–9009

    Google Scholar 

  • De la Escosura-Muñiz A, Merkoçi A (2011) A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7:675–682

    PubMed  Google Scholar 

  • De la Escosura-Muñiz A, Merkoçi A (2012) Nanochannels preparation and application in biosensing. ACS Nano 6(9):7556–7583

    PubMed  Google Scholar 

  • De la Escosura-Muñiz A, Ambrosi A, Merkoçi A (2008) Electrochemical analysis with nanoparticle-based biosystems. Trends Anal Chem 27:568–584

    Google Scholar 

  • De la Escosura-Muñiz A, Parolo C, Merkoçi A (2010) Immunosensing using nanoparticles. Mater Today 13:24–34

    Google Scholar 

  • De la Escosura-Muñiz A, Chunglok W, Surareungchai W, Merkoçi A (2013) Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens Bioelectron 40:24–31

    PubMed  Google Scholar 

  • Dong H, Yan F, Ji H, Wong DKY, Ju H (2010) Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater 20:1173–1179

    CAS  Google Scholar 

  • Fabris L, Dante M, Braun G, Lee SJ, Reich NO, Moskovits M, Nguyen TQ, Bazan QC (2007) A heterogeneous PNA-based SERS method for DNA detection. J Am Chem Soc 129:6086

    PubMed  CAS  Google Scholar 

  • Fan H, Xing R, Xu Y, Wang Q, He P, Fang Y (2010) A new electrochemical method for DNA sequence detection with homogeneous hybridization based on host–guest recognition technology. Electrochem Comm 12:501–504

    Google Scholar 

  • Fan H, Zhao K, Lin Y, Wang X, Wu B, Li Q, Cheng L (2011) A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles. Anal Biochem 419:168–172

    PubMed  CAS  Google Scholar 

  • Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Google Scholar 

  • Gao Q, Zhang W, Guo Y, Qi H, Zhang C (2011) Highly sensitive impedimetric sensing of DNA hybridization based on the target DNA-induced displacement of gold nanoparticles attached to ssDNA probe. Electrochem Comm 13:335–337

    CAS  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    PubMed  CAS  Google Scholar 

  • Hansen J, Mukhopadhyay R, Hansen JØ, Gothelf KV (2006) Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. J Am Chem Soc 128:3860–3861

    PubMed  CAS  Google Scholar 

  • He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    CAS  Google Scholar 

  • He W, Huang CZ, Li YF, Xie JP, Yang RG, Zhou PF, Wang J (2008) One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem 80:8424–8430

    PubMed  CAS  Google Scholar 

  • He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, Zhang X, Liu G (2011) Ultrasensitive nucleic acid biosensor based on enzyme–gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26:2018–2024

    PubMed  CAS  Google Scholar 

  • Hill HD, Hurst SJ, Mirkin CA (2009) Curvature-induced base pair “slipping” effects in DNA-nanoparticle hybridization. Nano Lett 9:317–324

    PubMed  CAS  Google Scholar 

  • Hilliard L, Zhao X, Tan W (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51–56

    CAS  Google Scholar 

  • Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401

    PubMed  CAS  Google Scholar 

  • Howorka S, Cheley S, Bayley H (2001) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19:636–639

    PubMed  CAS  Google Scholar 

  • Hu Y, Hua S, Li F, Jiang Y, Bai X, Li D, Niu L (2011) Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing. Biosens Bioelectron 26:4355–4361

    PubMed  CAS  Google Scholar 

  • Huh YS, Chung AJ, Cordovez B, Erickson D (2009) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9:433–439

    PubMed  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    PubMed  CAS  Google Scholar 

  • Jiang X, Chen K, Han H (2011) Biosens Bioelectron 28:464–468

    PubMed  CAS  Google Scholar 

  • Kang T, Min Yoo S, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193

    PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Robertson JWF, Chan ER, Reiner JE, Stanford VM (2008) Nanoscopic porous sensors. Annu Rev Anal Chem 1:737–766

    CAS  Google Scholar 

  • Kjällman THM, Peng H, Soeller C, Travas-Sejdic J (2010) A CdTe nanoparticle-modified hairpin probe for direct and sensitive electrochemical detection of DNA. Analyst 135:488–4894

    PubMed  Google Scholar 

  • Knopp D, Tang D, Niessner R (2009) Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30

    PubMed  CAS  Google Scholar 

  • Koegler P, Clayton A, Thissen H, Nonato G, Santos C, Kingshott P (2012) The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 64(15):1820–1839

    PubMed  CAS  Google Scholar 

  • Kong JM, Zhang H, Chen XT, Balasubramanian N, Kwong DL (2008) Ultrasensitive electrical detection of nucleic acids by hematin catalysed silver nanoparticle formation in sub-microgapped biosensors. Biosens Bioelectron 24:787–791

    CAS  Google Scholar 

  • Li H, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    PubMed  CAS  Google Scholar 

  • Li F, Feng Y, Dong P, Tang B (2010) Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor. Biosens Bioelectron 25:2084–2088

    PubMed  CAS  Google Scholar 

  • Li F, Feng Y, Dong P, Yang L, Tang B (2011a) Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor. Biosens Bioelectron 26:1947–1952

    PubMed  CAS  Google Scholar 

  • Li F, Han X, Liu S (2011b) Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens Bioelectron 26:2619–2625

    PubMed  CAS  Google Scholar 

  • Li K, Lai Y, Zhang W, Jin L (2011c) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84:607–613

    PubMed  CAS  Google Scholar 

  • Liao WC, Ho JA (2009) Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Anal Chem 81:2470–2476

    PubMed  CAS  Google Scholar 

  • Liao KT, Cheng JT, Li CL, Liu RT, Huang HJ (2009) Ultra-sensitive detection of mutated papillary thyroid carcinoma DNA using square wave stripping voltammetry method and amplified gold nanoparticle biomarkers. Biosens Bioelectron 24:1899–1904

    PubMed  CAS  Google Scholar 

  • Litos IK, Ioannou PC, Christopoulos TK, Traeger-Synodinos J, Kanavakis E (2009) Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms. Biosens Bioelectron 24:3135–3139

    PubMed  CAS  Google Scholar 

  • Liu S, Liu J, Han X, Cui Y, Wang W (2010) Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization. Biosens Bioelectron 25:1640–1645

    PubMed  CAS  Google Scholar 

  • Luo YQ, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8(5):694–700

    PubMed  CAS  Google Scholar 

  • Malic L, Veres T, Tabrizian M (2011) Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. Biosens Bioelectron 26:2053–2059

    PubMed  CAS  Google Scholar 

  • Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81:1660–1668

    PubMed  CAS  Google Scholar 

  • Marín S, Merkoçi A (2009) Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology 20:055101

    PubMed  Google Scholar 

  • Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    PubMed  CAS  Google Scholar 

  • Merkoçi A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    Google Scholar 

  • Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 26:1164–1177

    PubMed  Google Scholar 

  • Merkoçi M, Aldavert M, Marín S, Alegret S (2005a) New materials for electrochemical sensing V: Nanoparticles for DNA labeling. Trends Anal Chem 24:341–349

    Google Scholar 

  • Merkoçi A, Pumera M, Llopis X, Pérez B, Del Valle M, Alegret S (2005b) New materials for electrochemical sensing VI: Carbon nanotubes. Trends Anal Chem 24:826–838

    Google Scholar 

  • Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272

    PubMed  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    PubMed  CAS  Google Scholar 

  • Moon S, Kim Y, Oh Y, Lee H, Kim HC, Lee K, Kim D (2012) Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization. Biosens Bioelectron 32:141–147

    PubMed  CAS  Google Scholar 

  • Munroe DJ, Harris TJR (2010) Third-generation sequencing fireworks at Marco Island. Nat Biotechnol 28:426–428

    PubMed  CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    CAS  Google Scholar 

  • Nakane J, Wiggin M, Marziali AA (2004) Nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys J 87:615–621

    PubMed  CAS  Google Scholar 

  • Osaki T, Suzuki H, Le Pioufle B, Takeuchi S (2009) Multichannel simultaneous measurements of single-molecule translocation in α-hemolysin nanopore array. Anal Chem 81:9866–9870

    PubMed  CAS  Google Scholar 

  • Pal S, Alocilja EC (2010) Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosens Bioelectron 26:1624–1630

    PubMed  CAS  Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    PubMed  CAS  Google Scholar 

  • Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 1–15

    Google Scholar 

  • Pinijsuwan S, Rijiravanich P, Somasundrum M, Surareungchai W (2008) Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification. Anal Chem 80:6779–6784

    PubMed  CAS  Google Scholar 

  • Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA (2009) Nano-flares for mRNA regulation and detection. ACS Nano 3:2147–2152

    PubMed  CAS  Google Scholar 

  • Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84:2062–2066

    PubMed  CAS  Google Scholar 

  • Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21:9625–9629

    PubMed  CAS  Google Scholar 

  • Qin PZ, Niu CG, Zeng GM, Ruan M, Tang L, Gong JL (2009) Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta 80:991–995

    PubMed  CAS  Google Scholar 

  • Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    PubMed  CAS  Google Scholar 

  • Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479

    PubMed  CAS  Google Scholar 

  • Selvaraju T, Das J, Jo K, Kwon K, Huh CH, Kim TK, Yang H (2008) Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. Langmuir 24:9883–9888

    PubMed  CAS  Google Scholar 

  • Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39:1115–1132

    PubMed  CAS  Google Scholar 

  • Son A, Dosev D, Nichkov M, Ma Z, Kennedy IM, Scow KM, Hristov KR (2007) Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles. Anal Biochem 370:186–194

    PubMed  CAS  Google Scholar 

  • Spain E, Kojima R, Kaner RB, Wallace GG, O’Grady J, Lacey K, Barry T, Keyes TE, Forster RJ (2011) High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosens Bioelectron 26:2613–2618

    PubMed  CAS  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    PubMed  CAS  Google Scholar 

  • Stoddart D, Maglia G, Mikhailova E, Heron AJ, Bayley H (2009) Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew Chem Int Ed 48:1–5

    Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    CAS  Google Scholar 

  • Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    CAS  Google Scholar 

  • Storhoff JJ, Lucas AD, Garimella V, Bao P, Müller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887

    PubMed  CAS  Google Scholar 

  • Takmakov P, Vlassiouk I, Smirnov S (2006) Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Analyst 131:1248–1253

    PubMed  CAS  Google Scholar 

  • Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165

    PubMed  CAS  Google Scholar 

  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417:73–79

    PubMed  CAS  Google Scholar 

  • Torres-Chavolla E, Alocilja EC (2011) Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron 26:4614–4618

    PubMed  CAS  Google Scholar 

  • Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    PubMed  CAS  Google Scholar 

  • Vercoutere WA, Winters-Hilt S, DeGuzman VS, Deamer D, Ridino SE, Rodgers JT, Olsen HE, Marziali A, Akeson M (2003) Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res 31:1311–1318

    PubMed  CAS  Google Scholar 

  • Vlassiouk I, Takmakov P, Smirnov S (2005) Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21:4776–4778

    PubMed  CAS  Google Scholar 

  • Vora GJ, Meador CE, Anderson GP, Taitt CR (2008) Comparison of detection and signal amplification methods for DNA microarrays. Mol Cell Probes 22:294–300

    PubMed  CAS  Google Scholar 

  • Wang J, Liu G, Merkoçi A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125:3214–3215

    PubMed  CAS  Google Scholar 

  • Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668–674

    PubMed  CAS  Google Scholar 

  • Wark AW, Lee HJ, Qavi AJ, Corn RM (2007) Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem 79:6697–6701

    PubMed  CAS  Google Scholar 

  • Wark AW, Lee HJ, Kim S, Nayeem S, Lee HJ (2010) Bioaffinity detection of pathogens on surfaces. J Ind Eng Chem 16:169–177

    CAS  Google Scholar 

  • Xiao L, Wei L, He Y, Yeung ES (2010) Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem 82:6308–6314

    PubMed  CAS  Google Scholar 

  • Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48:6849–6852

    CAS  Google Scholar 

  • Yan Y, Chen JIL, Ginger DS (2012) Photoswitchable oligonucleotide-modified gold nanoparticles: controlling hybridization stringency with photon dose. Nano Lett 12:2530–2536

    PubMed  CAS  Google Scholar 

  • Yeung SW, Lee TMH, Cai H, Hsing IM (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 34(18):e118

    PubMed  Google Scholar 

  • Yuan W, Ho HP, Lee RKY, Kong SK (2009) Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates. Appl Opt 48:4329–4337

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge MEC (Madrid) for the project MAT2011-25870, the EU’s support under FP7 contract number 24651355 “NADINE,” and the NATO Science for Peace and Security Programme’s support under the project SfP 983807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de la Escosura-Muñiz, A., Merkoçi, A. (2014). Application of Nanomaterials for DNA Sensing. In: Kjems, J., Ferapontova, E., Gothelf, K. (eds) Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38815-6_12

Download citation

Publish with us

Policies and ethics