Skip to main content

Probing the Space of Optimal Markov Logic Networks for Sequence Labeling

  • Conference paper
Inductive Logic Programming (ILP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7842))

Included in the following conference series:

  • 619 Accesses

Abstract

Discovering relational structure between input features in sequence labeling models has shown to improve their accuracies in several problem settings. The problem of learning relational structure for sequence labeling can be posed as learning Markov Logic Networks (MLN) for sequence labeling, which we abbreviate as Markov Logic Chains (MLC). This objective in propositional space can be solved efficiently and optimally by a Hierarchical Kernels based approach, referred to as StructRELHKL, which we recently proposed. However, the applicability of StructRELHKL in complex first order settings is non-trivial and challenging. We present the challenges and possibilities for optimally and simultaneously learning the structure as well as parameters of MLCs (as against learning them separately and/or greedily). Here, we look into leveraging the StructRELHKL approach for optimizing the MLC learning steps to the extent possible. To this end, we categorize first order MLC features based on their complexity and show that complex features can be constructed from simpler ones. We define a self-contained class of features called absolute features (\(\mathcal{AF}\)), which can be conjoined to yield complex MLC features. Our approach first generates a set of relevant \(\mathcal{AF}\)s and then makes use of the algorithm for StructRELHKL to learn their optimal conjunctions. We demonstrate the efficiency of our approach by evaluating on a publicly available activity recognition dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Getoor, L., Taskar, B.: Statistical relational learning. MIT Press (2006)

    Google Scholar 

  2. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming. Springer-Verlag New York, Inc., Secaucus (1997)

    Book  Google Scholar 

  3. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  4. Domingos, P., Kok, S., Poon, H., Richardson, M., Singla, P.: Unifying logical and statistical AI. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, vol. 1, pp. 2–7. AAAI Press (2006)

    Google Scholar 

  5. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhuo, H.H., Yang, Q., Hu, D.H., Li, L.: Learning complex action models with quantifiers and logical implications. Artif. Intell. 174(18), 1540–1569 (2010)

    Article  MathSciNet  Google Scholar 

  7. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 441–448. ACM, New York (2005)

    Google Scholar 

  8. Biba, M., Ferilli, S., Esposito, F.: Structure learning of markov logic networks through iterated local search. In: Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 361–365. IOS Press, Amsterdam (2008)

    Google Scholar 

  9. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks via functional gradient boosting. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM 2011, pp. 320–329. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  10. Rabiner, L.R.: Readings in speech recognition, pp. 267–296. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  11. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  12. Forney, G.J.: The viterbi algorithm. Proceedings of IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  13. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, pp. 104–111. ACM, New York (2004)

    Chapter  Google Scholar 

  14. McCallum, A., Li, W.: Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, pp. 188–191. Association for Computational Linguistics, Stroudsburg (2003)

    Chapter  Google Scholar 

  15. Nair, N., Ramakrishnan, G., Krishnaswamy, S.: Enhancing activity recognition in smart homes using feature induction. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 406–418. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Nair, N., Saha, A., Ramakrishnan, G., Krishnaswamy, S.: Rule ensemble learning using hierarchical kernels in structured output spaces. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  17. Wilson, D.H.: Assistive intelligent environments for automatic health monitoring. PhD Thesis, Carnegie Mellon University (2005)

    Google Scholar 

  18. van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp 2008, pp. 1–9. ACM, New York (2008)

    Google Scholar 

  19. Gibson, C., van Kasteren, T., Krose, B.: Monitoring homes with wireless sensor networks. In: Proceedings of the International Med-e-Tel Conference (2008)

    Google Scholar 

  20. McCallum, A.K.: Efficiently inducing features of conditional random fields. In: Proceedings of the Nineteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (2003)

    Google Scholar 

  21. Bach, F.: High-dimensional non-linear variable selection through hierarchical kernel learning. Technical report, INRIA, France (2009)

    Google Scholar 

  22. Gutmann, B., Kersting, K.: TildeCRF: Conditional random fields for logical sequences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 174–185. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Huynh, T.N., Mooney, R.J.: Online max-margin weight learning with markov logic networks. In: Proceedings of the AAAI 2010 Workshop on Statistical Relational AI (Star-AI 2010), Atlanta, GA, pp. 32–37 (July 2010)

    Google Scholar 

  24. Huynh, T.N., Mooney, R.J.: Online structure learning for markov logic networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 81–96. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal of Artificial Intelligence Research 25 (2006)

    Google Scholar 

  26. Kersting, K.: Say em for selecting probabilistic models for logical sequences. In: Proceedings of the Twenty First Conference on Uncertainty in Artificial Intelligence, pp. 300–307. Morgan Kaufmann (2005)

    Google Scholar 

  27. Thon, I.: Don’t fear optimality: Sampling for probabilistic-logic sequence models. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 226–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: Efficient inference and applications. Mach. Learn. 82(2), 239–272 (2011)

    Article  MATH  Google Scholar 

  29. Schulte, O., Khosravi, H., Kirkpatrick, A., Man, T., Gao, T., Zhu, Y.: Modelling relational statistics with bayes nets. In: Proceedings of 22nd International Conference on Inductive Logic Programming (ILP 2012). Springer (2012)

    Google Scholar 

  30. Flach, P., Lachiche, N.: 1BC: A first-order bayesian classifier. In: Džeroski, S., Flach, P. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. McCreath, E., Sharma, A.: LIME: A system for learning relations. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 336–374. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  32. Jawanpuria, P., Nath, J.S., Ramakrishnan, G.: Efficient rule ensemble learning using hierarchical kernels. In: Getoor, L., Scheffer, T. (eds.) ICML, pp. 161–168. Omnipress (2011)

    Google Scholar 

  33. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min. Knowl. Discov. 3(1), 7–36 (1999)

    Article  Google Scholar 

  34. Dehaspe, L., Toironen, H.: Relational data mining, pp. 189–208. Springer-Verlag New York, Inc., New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nair, N., Nagesh, A., Ramakrishnan, G. (2013). Probing the Space of Optimal Markov Logic Networks for Sequence Labeling. In: Riguzzi, F., Železný, F. (eds) Inductive Logic Programming. ILP 2012. Lecture Notes in Computer Science(), vol 7842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38812-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38812-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38811-8

  • Online ISBN: 978-3-642-38812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics