Skip to main content

Submolecular Resolution Imaging of \(\text{C}_{60}\): From Orbital Density to Bond Order

  • Conference paper
  • First Online:
Imaging and Manipulating Molecular Orbitals

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

I review a number of advances and milestones in the acquisition of submolecular resolution scanning probe microscope images of the buckminsterfullerene (\(\text{C}_{60}\)) molecule. Scanning tunneling microscopy essentially provides an image derived from the local density of states of the electronic structure of a molecule within an energy window defined by the tip-sample bias voltage. These measurements of the local density of states, which are generally interpreted in terms of molecular orbital probability density, have now been complemented by non-contact atomic force microscopy (NC-AFM) images of the internal structure of the molecule. The NC-AFM images yield either atomic resolution (if imaging occurs in the attractive regime of the tip-sample potential), or, in the Pauli exclusion regime, remarkable maps of the charge density of the interatomic bonds. This combination of scanning probe techniques is exceptionally powerful in elucidating the correlations between atomic structure, bond order, and the submolecular distribution and symmetry of electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This measurement is weighted, of course, by the density of states of the tip and the details of the tunneling process itself, including the variation in tunnel probability for electrons with different energies.

  2. 2.

    “Non-contact” is something of a misnomer, given that many of the highest resolution images to date have been acquired in the Pauli exclusion, i.e., strongly repulsive, regime of the tip-sample potential as described later in this chapter. Dynamic force microscopy is a somewhat more appropriate description, but the NC-AFM term is now firmly embedded in the field and so, for consistency, I will also use it here.

References

  1. Wang, X.D et al., Jpn. J. Appl. Phys., 31, L983 (1992)

    Google Scholar 

  2. Gross, L., Mohn, F., Moll, N., Schuler, B., Criado, A., Guitián, E., Pena, D., Gourdon, A., Meyer, G.: Science 337, 1326 (2012)

    Article  ADS  Google Scholar 

  3. Scerri, E.: J. Chem. Ed. 77, 1492 (2000)

    Article  Google Scholar 

  4. Moon, C.R., Mattos, L.S., Foster, B.K., Zeltzer, G., Ko, W., Manoharan, H.C.: Science 319, 782 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Spence, J.C.H., O’Keefe, M., Zuo, J.M.: J. Chem. Ed. 78, 877 (2001)

    Google Scholar 

  6. Mulder, P.: Int. J. Phil. Chem. 17, 21 (2011)

    Google Scholar 

  7. Moriarty, P.: Surf. Sci. Rep. 65, 175 (2010)

    Article  ADS  Google Scholar 

  8. Pascual, J.I., Gomez-Herrero, J., Rogero, C., Baro, A.M., Sanchez-Portal, D., Artacho, E., Ordejon, P., Soler, J.M.: Chem. Phys. Lett. 321, 78 (2000)

    Article  ADS  Google Scholar 

  9. Hou, J.G., Yang, J., Wang, H., Li, Q., Zeng, C., Lin, H., Wang, B., Chen, D.M., Zhu, Q.: Phys. Rev. Lett. 85, 2654 (2000)

    Article  ADS  Google Scholar 

  10. Hands, I.D., Dunn, J.L., Bates, C.A.: Phys. Rev. B 81, 205440 (2010)

    Article  ADS  Google Scholar 

  11. Sánchez-Portal, D., Artacho, E., Pascual, J.I., Gómez-Herrerom, J., Martin, R.M., Soler, J.M.: Surf. Sci. 482–485, 39 (2001)

    Article  Google Scholar 

  12. Rurali, R, Cuadrado, JI and Cerdá, J.I., Phys. Rev. B 81, 074519 (2010).

    Google Scholar 

  13. Schull, G., Frederiksen, T., Brandbyge, M., Berndt, R.: Phys. Rev. Lett. 103, 206803 (2009)

    Article  ADS  Google Scholar 

  14. Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D., Berndt, R.: Nat. Nanotech. 6, 23 (2010)

    Article  ADS  Google Scholar 

  15. Schull, G., Dappe, Y.J., González, C., Hulou, H., Berndt, R.: Nano Lett. 11, 3142 (2011)

    Article  Google Scholar 

  16. Hembacher, S., Giessibl, F.J., Mannhart, J.: Proc. Natl. Acad. Sci. 100, 12539 (2009)

    Article  ADS  Google Scholar 

  17. Feynman, R.: Phys. Rev. 56, 340 (1939)

    Article  ADS  MATH  Google Scholar 

  18. Giessibl, F.J., Hembacher, S., Bielefeldt, H., Mannhart, J.: Science 289, 422 (2000)

    Article  ADS  Google Scholar 

  19. Campbellová, A., Ondrácek, M., Pou, P., Pérez, R., Klapetek, P., Jelínek, P.: Nanotechnology 22, 295710 (2011)

    Article  Google Scholar 

  20. Chiutu, C., Sweetman, A.M., Lakin, A.J., Stannard, A., Jarvis, S., Kantorovich, L., Dunn, J.L., Moriarty, P.: Phys. Rev. Lett. 108, 268302 (2012)

    Article  ADS  Google Scholar 

  21. Perez, R., Payne, M.C., Stich, I., Terakura, K.: Phys. Rev. Lett. 78, 678 (1997)

    Article  ADS  Google Scholar 

  22. Ondrácek, M., Pou, P., Rozsíval, R., González, C.: Jelínek1, P, and Pérez, R. Phys. Rev. Lett. 106, 176101 (2011)

    Article  ADS  Google Scholar 

  23. Hobbs, C., Kantorovich, L.: Surf. Sci. 600, 551 (2006)

    Article  ADS  Google Scholar 

  24. Masenelli, B., Tournus, F., Melinon, P., Blase, X., Perez, A., Pellarin, M., Broyer, M., Flank, A.M., Lagarde, P.: Surf. Sci. 532, 875 (2003)

    Article  ADS  Google Scholar 

  25. Pawlak, R., Kawai, S., Fremy, S., Glatzel, T., Meyer, E.: ACS Nano 5, 6349 (2011)

    Article  Google Scholar 

  26. Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: Science 325, 1110 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The results of the Nottingham Nanoscience group described in this chapter stem from the work of many researchers with whom it has been my pleasure to collaborate including, in particular (and in alphabetical order): Joseph Bamidele (King’s College, London (KCL)), Cristina Chiutu, Rosanna Danza, Janette Dunn, Sam Jarvis, Lev Kantorovich (KCL), Andrew Lakin, Andrew Stannard, Peter Sharp, Adam Sweetman, and Richard Woolley. We are very grateful for financial support from the UK Engineering and Physical Sciences Research Council in the form of a fellowship (EP/G007837), from the Leverhulme Trust (through grant F/00114/BI), from the European Commission’s ICT-FET programme via the Atomic Scale and Single Molecule Logic gate Technologies (AtMol) project (www.atmol.eu), Contract No. 270028, and the ACRITAS Marie Curie Initial Training Network (www.acritas.eu). We are also very grateful for the support of the University of Nottingham High Performance Computing Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Moriarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moriarty, P. (2013). Submolecular Resolution Imaging of \(\text{C}_{60}\): From Orbital Density to Bond Order. In: Grill, L., Joachim, C. (eds) Imaging and Manipulating Molecular Orbitals. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38809-5_14

Download citation

Publish with us

Policies and ethics