Skip to main content

Visualizing Electron Correlation in Molecules Using a Scanning Tunneling Microscope: Theory and Ab Initio Prediction

  • Conference paper
  • First Online:
Imaging and Manipulating Molecular Orbitals

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1025 Accesses

Abstract

Scanning tunneling spectroscopy (STS) is able to image a single molecule decoupled from its supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron–electron interactions. Here, we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. After developing the proper many-body theoretical framework, we present the coupled-cluster calculation of the STS images of a planar molecule with a metal center, copper-(deh-salen). We find that many-body correlations alter significantly the image spectral weight close to the copper ion. This change is large enough to be assessed experimentally and survives to molecule–substrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesendager, R.: Scanning probe microscopy and spectroscopy. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  2. Venema L.C., Wildöer J.W.G., Janssen J.W., Tans S.J., Temminck Tuinstra H.L.J., Kouwenhoven L. P., Dekker, C.: Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999). doi:10.1126/science.283.5398.52

    Google Scholar 

  3. Repp, J., Meyer, G., Stojkovic, S.M., Gourdon, A., Joachim, C.: Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005). doi:10.1103/PhysRevLett.94.026803

    Article  ADS  Google Scholar 

  4. Rontani, M., Molinari, E.: Imaging quasiparticle wave functions in quantum dots via tunneling spectroscopy. Phys. Rev. B 71, 233106 (2005). doi:10.1103/PhysRevB.71.233106

    Article  ADS  Google Scholar 

  5. Maruccio, G., Janson, M., Schramm, A., Meyer, C., Matsui, T., Heyn, C., Hansen, W., Wiesendanger, R., Rontani, M., Molinari, E.: Correlation effects in wave function mapping of molecular beam epitaxy grown quantum dots. Nano Lett. 7, 2701–2706 (2007). doi:10.1021/nl071133m

    Article  ADS  Google Scholar 

  6. Bester, G., Reuter, D., He, L., Zunger, A., Kailuweit, P., Wieck, A.D., Zeitler, U., Maan, J.C., Wibbelhoff, O., Lorke, A.: Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions in InAs/GaAs quantum dots. Phys. Rev. B 76, 075338 (2007). doi:10.1103/PhysRevB.76.075338

    Article  ADS  Google Scholar 

  7. Toroz, D., Rontani, M., Corni, S.: Visualizing electron correlation by means of ab initio scanning tunneling spectroscopy images of single molecules. J. Chem. Phys. 134, 024104 (2011). doi:10.1063/1.3520567

    Article  ADS  Google Scholar 

  8. Secchi A., Rontani M.: Spectral function of few electrons in quantum wires and carbon nanotubes as a signature of Wigner localization. Phys. Rev. B 85, 121410(R) (2012). doi:10.1103/PhysRevB.85.121410

  9. Helgaker, T., Jørgensen, P., Olsen, J.: Molecular electronic structure theory. Wiley, Chichester (2000)

    Google Scholar 

  10. Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruña, H.D., McEuen, P.L., Ralph, D.C.: Coulomb blockade and the Kondo effect in single atom transistors. Nature 417, 722–725 (2002). doi:10.1038/nature00791

    Article  ADS  Google Scholar 

  11. Liang, W., Shores, M.P., Bockrath, M., Long, J.R., Park, H.: Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002). doi:10.1038/nature00790

    Article  ADS  Google Scholar 

  12. Neaton, J.B., Hybertsen, M.S., Louie, S.G.: Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). doi:10.1103/PhysRevLett.97.216405

    Article  ADS  Google Scholar 

  13. Thygesen, K.S., Rubio, A.: Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009). doi:10.1103/PhysRevLett.102.046802

    Article  ADS  Google Scholar 

  14. Freysoldt, C., Rinke, P., Scheffler, M.: Controlling polarization at insulating surfaces: Quasiparticle calculations for molecules adsorbed on insulator films. Phys. Rev. Lett. 103, 056803 (2009). doi:10.1103/PhysRevLett.103.056803

    Article  ADS  Google Scholar 

  15. Soe, W.-H., Manzano, C., De Sarkar, A., Chandrasekhar, N., Joachim, C.: Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 102, 176102 (2009). doi:10.1103/PhysRevLett.102.176102

    Article  ADS  Google Scholar 

  16. Toroz, D., Rontani, M., Corni, S.: Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation. Phys. Rev. Lett. 110, 018305 (2013). doi:10.1103/PhysRevLett.110.018305

    Article  ADS  Google Scholar 

  17. Tersoff, J., Hamman, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985). doi:10.1103/PhysRevB.31.805

    Article  ADS  Google Scholar 

  18. Rontani, M.: Friedel sum rule for an interacting multiorbital quantum dot. Phys. Rev. Lett. 97, 076801 (2006). doi:10.1103/PhysRevLett.97.076801

    Article  ADS  Google Scholar 

  19. Rontani, M.: Exchange and correlation effects in the transmission phase through a few-electron quantum dot. Phys. Rev. B 82, 045310 (2010). doi:10.1103/PhysRevB.82.045310

    Article  ADS  Google Scholar 

  20. Frisch M.J. et al.: Gaussian 09, Revision B.01. Gaussian Inc., Wallingford CT (2010)

    Google Scholar 

  21. Suresh, E., Bhadbhade, M.M., Srinivas, D.: Molecular association, chelate conformation and reactivity correlations in substituted o-phenylenebis(salicylidenato)copper(//) complexes: UV-visible, EPR, and X-ray structural investigations. Polyhedron 15, 4133–4144 (1996). doi:10.1016/0277-5387(96)00178-7

    Article  Google Scholar 

Download references

Acknowledgments

Funding from INFM under the Young Researcher Seed Project 2008 initiative and Fondazione Cassa di Risparmio di Modena under the project COLDandFEW is gratefully acknowledged. Computer time has been provided by CINECA under the CINECA-ISCRA supercomputer project grants IscrB_FERMIFEW, IscrC_FEW1D, and IscrC_QUASIPAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Rontani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rontani, M., Toroz, D., Corni, S. (2013). Visualizing Electron Correlation in Molecules Using a Scanning Tunneling Microscope: Theory and Ab Initio Prediction. In: Grill, L., Joachim, C. (eds) Imaging and Manipulating Molecular Orbitals. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38809-5_13

Download citation

Publish with us

Policies and ethics