Skip to main content

Electron Transport Through a Molecular Junction Using a Multi-configurational Description

  • Conference paper
  • First Online:
Imaging and Manipulating Molecular Orbitals

Abstract

The importance of the electronic description of the junction electronic structure is investigated in quantum transport through molecular devices. Using an accurate wave-function-based description of the low-energy spectroscopy, transport through a 2-electron/2-molecular orbital prototype is evaluated. The contributions arising from the presence of competing singlet and triplet states in magnetic systems are analyzed. It is shown that the electronic conductivity provides a signature of the full multiplet energy spectrum, as well as of the multideterminant structure of wave-functions. We then inspected the current-potential characteristics as a function of the differential magnetization of the electrodes. From the wave-function description, a modulation of the magnetoresistance ratio is anticipated and both direct and inverse regimes are observed depending on the electronic structure of the junction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, only symmetry-adapted states were considered since our goal was to emphasize the importance of the molecular junction spectroscopy. No broken-symmetry states were introduced to avoid nonproper spin eigen-states.

References

  1. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. (1974). doi:16/0009-2614(74)85031-1

    Google Scholar 

  2. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Conductance of a molecular junction. Science (1997). doi:10.1126/science.278.5336.252

    Google Scholar 

  3. Tao, N.J.: Electron transport in molecular junctions. Nat. Nano. (2006). doi:10.1038/nnano.2006.130

    Google Scholar 

  4. Meisner, J.S., Kamenetska, M., Krikorian, M., Steigerwald, M.L., Venkataraman, L., Nuckolls, C.: A single-molecule potentiometer. Nano Lett. (2011). doi:10.1021/nl104411f

    Google Scholar 

  5. Chen, J., Reed, M.A., Rawlett, A.M., Tour, J.M.: Large on-off ratios and negative differential resistance in a molecular electronic device. Science (1999). doi:10.1126/science.286.5444.1550

    Google Scholar 

  6. Simonian, N., Li, J., Likharev, K.: Negative differential resistance at sequential single-electron tunnelling through atoms and molecules. Nanotechnology (2007). doi:10.1088/0957-4484/18/42/424006

    Google Scholar 

  7. Crivillers, N., Paradinas, M., Mas-Torrent, M., Bromley, S.T., Rovira, C., Ocal, C., Veciana, J.: Negative differential resistance (NDR) in similar molecules with distinct redox behaviour. Chem. Commun. (2011). doi:10.1039/c1cc10677e

    Google Scholar 

  8. Korytár, R., Lorente, N.: Multi-orbital non-crossing approximation from maximally localized wannier functions: the kondo signature of copper phthalocyanine on Ag(100). J. Phys.: Condens. Matter (2011). doi:10.1088/0953-8984/23/35/355009.

    Google Scholar 

  9. Herrmann, C., Solomon, G.C., Ratner, M.A.: Organic radicals as spin filters. J. Am. Chem. Soc. (2010). doi:10.1021/ja910483b

    Google Scholar 

  10. Solomon, G.C., Reimers, J.R., Hush, N.S.: Single molecule conductivity: The role of junction-orbital degeneracy in the artificially high currents predicted by ab initio approaches. J. Chem. Phys. (2004). doi:10.1063/1.1791011

    Google Scholar 

  11. Robert, V.: Electron tunneling: A scattering problem and a chemical approach. interpretation of STM O\(_2\) image. J. Phys. Chem. A (1999). doi:10.1021/jp990488u.

    Google Scholar 

  12. Calzado, C.J., Cabrero, J., Malrieu, J.-P., Caballol, R.: Analysis of the magnetic coupling in binuclear complexes. I. physics of the coupling. J. Chem. Phys. (2002). doi:10.1063/1.1430740

    Google Scholar 

  13. Calzado, C.J., Cabrero, J., Malrieu, J.-P., Caballol, R.: Analysis of the magnetic coupling in binuclear complexes. II. derivation of valence effective hamiltonians from ab initio CI and DFT calculations. J. Chem. Phys. (2002). doi:10.1063/1.1446024

    Google Scholar 

  14. Leijnse, M., Sun, W., Brøndsted Nielsen, M., Hedegård, P., Flensberg, K.: Interaction-induced negative differential resistance in asymmetric molecular junctions. J. Chem. Phys. (2011). doi:10.1063/1.3560474

    Google Scholar 

  15. Gauyacq, J.P., Lorente, N.: Excitation of spin waves by tunneling electrons in ferromagnetic and antiferromagnetic spin-1/2 heisenberg chains. Phys. Rev. B (2011). doi:10.1103/PhysRevB.83.035418

    Google Scholar 

  16. Muralidharan, B., Ghosh, A.W., Datta, S.: Probing electronic excitations in molecular conduction. Phys. Rev. B (2006). doi:10.1103/PhysRevB.73.155410

    Google Scholar 

  17. Hettler, M.H., Schoeller, H., Wenzel, W.: Non-linear transport through a molecular nanojunction. Europhys. Lett. (2002). doi:10.1209/epl/i2002-00500-3

    Google Scholar 

  18. Parida, P., Lakshmi, S., Pati, S. K.: Negative differential resistance in nanoscale transport in the coulomb blockade regime. J. Phys.: Condens. Matter (2009). doi:10.1088/0953-8984/21/9/095301.

    Google Scholar 

  19. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. (1992). doi:10.1103/PhysRevLett.68.2512

    Google Scholar 

  20. Bominaar, E.L., Achim, C., Borshch, S.A., Girerd, J.-J., Münck, E.: Analysis of exchange interaction and electron delocalization as intramolecular determinants of intermolecular electron-transfer kinetics. Inorg. Chem. (1997). doi:10.1021/ic961298q

    Google Scholar 

  21. Smit, R.H.M., Noat, Y., Untiedt, C., Lang, N.D., van Hemert, M.C., van Ruitenbeek, J.M.: Measurement of the conductance of a hydrogen molecule. Nature (2002). doi:10.1038/nature01103

    Google Scholar 

  22. Galperin, M., Ratner, M.A., Nitzan, A.: Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips. J. Chem. Phys. (2004). doi:10.1063/1.1814076

    Google Scholar 

  23. Galperin, M., Ratner, M. A., Nitzan, A.: Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter (2007). doi:10.1088/0953-8984/19/10/103201.

    Google Scholar 

  24. Härtle, R., Benesch, C., Thoss, M.: Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. Phys. Rev. Lett. (2009). doi:10.1103/PhysRevLett.102.146801

    Google Scholar 

  25. Miralies, J., Malrieu, J.-P., Caballol, R.: Observable-dedicated molecular orbitals. i. method and illustrations. Chem. Phys. (1991). doi:10.1016/0301-0104(91)90003-C.

    Google Scholar 

  26. Ben Amor, N., Maynau, D.: Size-consistent self-consistent configuration interaction from a complete active space. Chem. Phys. Lett. (1998). doi:10.1016/S0009-2614(98)00104-3

    Google Scholar 

  27. Le Guennic, B., Petit, S., Chastanet, G., Pilet, G., Ben Amor, N., Robert, V.: Antiferromagnetic behavior based on quasi-orthogonal MOs: synthesis and characterization of a Cu\(_3\) oxidase model. Inorg. Chem. (2011). doi: 10.1021/ic701758x

    Google Scholar 

  28. Bloch, C.: Sur la théorie des perturbations des états liés. Nuclear Physics (1958). doi:10.1016/0029-5582(58)90116-0

    Google Scholar 

  29. Lepetit, M.-B., Suaud, N., Gelle, A., Robert, V.: Environment effects on effective magnetic exchange integrals and local spectroscopy of extended strongly correlated systems. J. Chem. Phys. (2003). doi:10.1063/1.1540620

    Google Scholar 

  30. Neaton, J.B., Hybertsen, M.S., Louie, S.G.: Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. (2006). doi:10.1103/PhysRevLett.97.216405

    Google Scholar 

  31. Vérot, M., Rota, J.-B., Kepenekian, M., Le Guennic, B., Robert, V.: Magnetic and conduction properties in 1D organic radical materials: an ab initio inspection for a challenging quest. Phys. Chem. Chem. Phys. (2011). doi:10.1039/c0cp02124e

    Google Scholar 

  32. Rota, J.-B., Le Guennic, B., Robert, V.: Toward verdazyl radical-based materials: Ab initio inspection of potential organic candidates for spin-crossover phenomenon. Inorg. Chem. (2010). doi:10.1021/ic902197f

    Google Scholar 

  33. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A (1975). doi:10.1016/0375-9601(75)90174-7

    Google Scholar 

  34. Baibich, M., Broto, J., Fert, A., Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. (1988). doi:10.1103/PhysRevLett.61.2472

    Google Scholar 

  35. Moritomo, Y., Asamitsu, A., Kuwahara, H., Tokura, Y.: Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature (1996). doi:10.1038/380141a0

    Google Scholar 

  36. Liao, Z.-M., Li, Y.-D., Xu, J., Zhang, J.-M., Xia, K., Yu, D.-P.: Spin-filter effect in magnetite nanowire. Nano Lett. (2006). doi:10.1021/nl052199p

    Google Scholar 

  37. Gould, C., Rüster, C., Jungwirth, T., Girgis, E., Schott, G.M., Giraud, R., Brunner, K., Schmidt, G., Molenkamp, L.W.: Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.117203

    Google Scholar 

  38. Lachinov, A.N., Genoe, J., Vorob’eva, N.V., Lachinov, A.A., Garifullina, F.F., Kornilov, V.M.: Magnetoresistance phenomena in ferromagnetic/wide band gap polymer system. Synth. Met. (2011). doi:10.1016/j.synthmet.2010.12.010

    Google Scholar 

  39. Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J.: Giant magnetoresistance in organic spin-valves. Nature (2004). doi:10.1038/nature02325

    Google Scholar 

  40. Barraud, C., Seneor, P., Mattana, R., Fusil, S., Bouzehouane, K., Deranlot, C., Graziosi, P., Hueso, L., Bergenti, I., Dediu, V., Petroff, F., Fert, A.: Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. (2010). doi:10.1038/nphys1688

    Google Scholar 

  41. Grünewald, M., Wahler, M., Schumann, F., Michelfeit, M., Gould, C., Schmidt, R., Würthner, F., Schmidt, G., Molenkamp, L.W.: Tunneling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B (2011). doi:10.1103/PhysRevB.84.125208

    Google Scholar 

  42. Hueso, L.E., Pruneda, J.M., Ferrari, V., Burnell, G., Valdés-Herrera, J.P., Simons, B.D., Littlewood, P.B., Artacho, E., Fert, A., Mathur, N.D.: Transformation of spin information into large electrical signals using carbon nanotubes. Nature (2007). doi:10.1038/nature05507

    Google Scholar 

  43. Urdampilleta, M., Klyatskaya, S., Cleuziou, J.-P., Ruben, M., Wernsdorfer, W.: Supramolecular spin valves. Nat. Mater. (2011). doi:10.1038/nmat3050

    Google Scholar 

  44. Sanvito, S.: Organic spintronics: Filtering spins with molecules. Nat. Mater. (2011). doi:10.1038/nmat3061

    Google Scholar 

  45. Iacovita, C., Rastei, M.V., Heinrich, B.W., Brumme, T., Kortus, J., Limot, L., Bucher, J.P.: Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. (2008). doi:10.1103/PhysRevLett.101.116602

    Google Scholar 

  46. Mandal, S., Pati, R.: What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano (2012). doi:10.1021/nn3006569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vérot .

Editor information

Editors and Affiliations

Appendices

A. Coefficients

$$\begin{aligned} w_{{\rm{r}}I^-,\sigma }= &\;x_{\rm{r},\sigma }\frac{2\uppi }{\hbar Z} \sum _{I}\rho _{\rm{r}}(E_{N}-E_{N+1}) \hat{D}(E_{N}-E_{N+1})\\&\quad \quad \quad \quad\times \sum _{f}\left| \gamma _{r,f}\langle {I^-}|f^{\dag }_{\sigma }r_{\sigma }|{I} \otimes r \rangle \right| ^2 \exp \left( -\frac{E_{N+1}}{k_{B}T}\right) \end{aligned}$$
$$\begin{aligned} w_{I^-{\rm{l}},\sigma }=&\;x_{\rm{l},\sigma }\frac{2\uppi }{\hbar Z}\sum _{I}\left( 1- \rho _{{\text{ l }}}(E_{N}-E_{N+1})\right) \hat{D}(E_{N}-E_{N+1})\\&\quad \quad \quad \quad \quad \quad \times \sum _{f}\left| \gamma _{l,f} \langle {I} \otimes l|l^{\dag }_{\sigma }f_{\sigma }| {I^-}\rangle \right| ^2 \exp \left( -\frac{E_{N+1}}{k_{B}T}\right) \end{aligned}$$
$$\begin{aligned} w_{I^-{\rm{r}},\sigma }=&\;x_{\rm{r},\sigma }\frac{2\uppi }{\hbar Z}\sum _{I}\left( 1- \rho _{\rm{r}}(E_{N}-E_{N+1})\right) \hat{D}(E_{N}-E_{N+1})\\&\quad \quad \quad \quad \quad \quad \times \sum _{f}\left| \gamma _{r,f} \langle {I} \otimes r|r^{\dag }_{\sigma }f_{\sigma }| {I^-}\rangle \right| ^2 \exp \left( -\frac{E_{N+1}}{k_{B}T}\right) \end{aligned}$$

B. Cancellation of Coefficients in \(\mathbf{i }_{\text{ tot }}\) and \(\mathbf{P }^{{\text{ i }}} \) for a Parallel Magnetization

All coefficients can be factored depending on the corresponding spin and the electrode involved. All the \(w_{\uparrow }\) coefficients can be factorized as \(w= \bar{w} x_{1}\). While all \(w_{\downarrow }\) coefficients can be factorized as: \(w= \bar{w} \left( 1- x_{1}\right) \).

As the difference between \(w_{I^-\text{ r,l } ,\sigma }\) and \(w_{r,1 I^-,\sigma }\) is only the proportionality to \(1-\rho _{1,\rm{r}}\) or \(\rho _{1,\rm{r}}\). We have:

$$\begin{aligned} A_1+A_2=&\;B_1+B_2\\ =&\;\frac{2\uppi }{\hbar Z}\sum _{I} \hat{D}(E_{N}-E_{N+1})\sum _{f}\left| \gamma _{l,f} \langle {I} \otimes l|l^{\dag }_{\sigma }f_{\sigma }| {I^-}\rangle \right| ^2 \exp \left( -\frac{E_{N+1}}{k_{B}T}\right) \end{aligned}$$

and \(C_1+C_2=D_1+D_2\)

Table 2 Simplified expression of the different coupling coefficients for the parallel situation

Using equations (3) and (5) we can show that the polarization \(P^{i}\) is equal to \(2x-1\) and the total current is constant.

C. Origin of the Quadratic Term in the Total Current for an Antiparallel Situation

For the antiparallel situation, only the proportionality to \(x\) or \(1-x\) is changed for the coefficients involving the right electrode.

Table 3 Simplified expression of the different coupling coefficients for the antiparallel situation

Using Eqs. (3) and (5) we can show that the quadratic term in the total current is the following:

$$\begin{aligned} \frac{1}{A_1+A_2+C_1+C_2}((A_1-C_1)(D_1-B_1)+(A_2-C_2)(B_2-D_2)) \end{aligned}$$

As a consequence everything is controlled by the difference between \(\uparrow \) and \(\downarrow \) coefficients deprived of their dependence upon \(x\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vérot, M., Borshch, S.A., Robert, V. (2013). Electron Transport Through a Molecular Junction Using a Multi-configurational Description. In: Grill, L., Joachim, C. (eds) Imaging and Manipulating Molecular Orbitals. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38809-5_12

Download citation

Publish with us

Policies and ethics