Skip to main content

Homogeneity at Infinity of Stationary Solutions of Multivariate Affine Stochastic Recursions

  • Conference paper
  • First Online:
Random Matrices and Iterated Random Functions

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 53))

Abstract

We consider a d-dimensional affine stochastic recursion of general type corresponding to the relation

$$\displaystyle{ X_{n+1} = A_{n+1}X_{n} + B_{n+1},\quad X_{0} = x. }$$
(S)

Under natural conditions, this recursion has a unique stationary solution R, which is unbounded. If d > 2, we sketch a proof of the fact that R belongs to the domain of attraction of a stable law which depends essentially of the linear part of the recursion. The proof is based on renewal theorems for products of random matrices, radial Fourier analysis in the vector space \({\mathbb{R}}^{d}\), and spectral gap properties for convolution operators on the corresponding projective space. We state the corresponding simpler result for d = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boman, J., Lindskog, F.: Support theorems for the Radon transform and Cramér-Wold theorems. J. Theor. Probab. 22(3), 683–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  3. Buraczewski, D., Damek, E., Guivarc’h, Y., Hulanicki, A., Urban, R.: Tail-homogeneity of stationary measures for some multidimensional stochastic recursions. Probab. Theory Relat. Fields 145(3–4), 385–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  5. Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. In: Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposia in Pure Mathematics, Williamstown, 1972, vol. XXVI, pp. 193–229. American Mathematical Society, Providence, R.I. (1973)

    Google Scholar 

  6. Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126–166 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldsheid, I.Y.: Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip. Probab. Theory Relat. Fields 141(3–4), 471–511 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guivarc’h, Y.: Heavy tail properties of stationary solutions of multidimensional stochastic recursions. Dynamics & Stochastics. IMS Lecture Notes Monograph Series, vol. 48, pp. 85–99. Institute of Mathematical Statistics, Beachwood (2006)

    Google Scholar 

  9. Guivarc’h, Y.: On contraction properties for products of Markov driven random matrices. Zh. Mat. Fiz. Anal. Geom. 4(4), 457–489, 573 (2008)

    Google Scholar 

  10. Guivarc’h, Y., Le Page, E.: Spectral gap properties and asymptotics of stationary measures for affine random walks (2013). arXiv 1204-6004v3

    Google Scholar 

  11. Ionescu Tulcea, C.T., Marinescu, G.: Théorie ergodique pour des classes d’opérations non complètement continues. Ann. Math. 52(2), 140–147 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Mathematica 131, 207–248 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kesten, H.: Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2(3), 355–386 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klüppelberg, C., Pergamenchtchikov, S.: Extremal behaviour of models with multivariate random recurrence representation. Stoch. Process. Appl. 117(4), 432–456 (2007)

    Article  MATH  Google Scholar 

  15. Le Page, É.: Théorèmes limites pour les produits de matrices aléatoires. Probability Measures on Groups (Oberwolfach, 1981). Lecture Notes in Mathematics, vol. 928, pp. 258–303. Springer, Berlin/New York (1982)

    Google Scholar 

  16. Le Page, É.: Théorèmes de renouvellement pour les produits de matrices aléatoires. Séminaires de probabilités Rennes. Publication des Séminaires de Mathématiques, Univ. Rennes I, pp. 1–116 (1983)

    Google Scholar 

  17. Le Page, É.: Queues des probabilités stationnaires pour les marches aléatoires affines sur la droite. (2010, preprint)

    Google Scholar 

  18. Lëtchikov, A.V.: Products of unimodular independent random matrices. Uspekhi Mat. Nauk 51(1(307)), 51–100 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Guivarc’h .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guivarc’h, Y., Page, É.L. (2013). Homogeneity at Infinity of Stationary Solutions of Multivariate Affine Stochastic Recursions. In: Alsmeyer, G., Löwe, M. (eds) Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38806-4_6

Download citation

Publish with us

Policies and ethics