Skip to main content

Haptic Rendering of Volume Data with Collision Detection Guarantee Using Path Finding

  • Conference paper
Transactions on Computational Science XVIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7848))

Abstract

In this paper we present a novel haptic rendering method for exploration of volumetric data. It addresses a recurring flaw in almost all related approaches, where the manipulated object, when moved too quickly, can go through or inside an obstacle. Additionally, either a specific topological structure for the collision objects is needed, or extra speed-up data structures should be prepared. These issues could make it difficult to use a method in practice. Our approach was designed to be free of such drawbacks. An improved version of the method presented here does not have the issues of the original method – oscillations of the interaction point and wrong friction force in some cases. It uses the ray casting technique for collision detection and a path finding approach for rigid collision response. The method operates directly on voxel data and does not use any precalculated structures, but uses an implicit surface representation being generated on the fly. This means that a virtual scene may be both dynamic or static. Additionally, the presented approach has a nearly constant time complexity independent of data resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakao, M., Kuroda, T., Komori, M., Oyama, H.: Evaluation and user study of haptic simulator for learning palpation in cardiovascular surgery. In: Proc. of Int. Conference of Artificial Reality and Tele-Existence (ICAT 2003), pp. 203–208 (2003)

    Google Scholar 

  2. Sewell, C., Blevins, N.H., Peddamatham, S., Tan, H.Z., Morris, D., Salisbury, K.: The effect of virtual haptic training on real surgical drilling proficiency. In: 2nd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC 2007), pp. 601–603 (2007)

    Google Scholar 

  3. Vlasov, R., Friese, K.-I., Wolter, F.-E.: Haptic rendering of volume data with collision determination guarantee using ray casting and implicit surface representation. In: Proc. of Cyberworlds 2012 Int. Conference, pp. 91–99 (September 2012)

    Google Scholar 

  4. Friese, K.-I., Blanke, P., Wolter, F.-E.: Yadiv – an open platform for 3d visualization and 3d segmentation of medical data. The Visual Computer 27, 129–139 (2011)

    Article  Google Scholar 

  5. Chen, M., Correa, C., Islam, S., Jones, M., Shen, P.Y., Silver, D., Walton, S.J., Willis, P.J.: Manipulating, deforming and animating sampled object representations. Computer Graphics Forum 26(4), 824–852 (2007)

    Google Scholar 

  6. Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. IEEE Computer 26(7), 51–64 (2007)

    Article  Google Scholar 

  7. Friese, K.-I.: Entwicklung einer Plattform zur 3D-Visualisierung und -Segmentierung medizinischer Daten. PhD thesis, Leibniz Universitat Hannover, Germany (2010)

    Google Scholar 

  8. Glencross, M., Chalmers, A.G., Lin, M.C., Otaduy, M.A., Gutierrez, D.: Exploiting perception in high-fidelity virtual environments. ACM SIGGRAPH 2006 Courses (July 2006)

    Google Scholar 

  9. Otaduy Tristan, M.A.: 6-dof haptic rendering using contact levels of detail and haptic textures. PhD thesis, University of North Carolina at Chapel Hill (2004)

    Google Scholar 

  10. Colgate, J.E., Stanley, M.C., Brown, J.M.: Issues in the haptic display of tool use. In: Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp. 140–145 (1995)

    Google Scholar 

  11. Brooks Jr., F.P., et al.: Project grope - haptic displays for scientific visualization. ACM SIGGRAPH Computer Graphics 24(4), 177–185 (1990)

    Article  Google Scholar 

  12. Adachi, Y., Kumano, T., Ogino, K.: Intermediate representation for stiff virtual objects. In: Virtual Reality Annual International Symposium, pp. 203–210 (1995)

    Google Scholar 

  13. Mark, W.R., Randolph, S.C., Finch, M., Van, J.M., Russell, V., Taylor II, M.: Adding force feedback to graphics systems: issues and solutions. In: Proc. of the 23rd Annual Conf. on Comp. Graphics and Interactive Techniques, pp. 447–452 (1996)

    Google Scholar 

  14. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Proc. of the Int. Conf. on Intelligent Robots and Systems, vol. 3, pp. 31–46 (1995)

    Google Scholar 

  15. Ortega, M., Redon, S., Coquillart, S.: A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Transactions on Visualization and Computer Graphics 13(3), 458–469 (2007)

    Article  Google Scholar 

  16. Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: Proc. of the 24th Ann. Conf. on Comp. Gr. and Interact. Techn., pp. 345–352 (1997)

    Google Scholar 

  17. Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M., Manocha, D.: Six degree-of-freedom haptic display of polygonal models. In: Proc. of the Conf. on Vis. 2000, pp. 139–146 (2000)

    Google Scholar 

  18. McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 401–408 (July 1999)

    Google Scholar 

  19. Wan, M., McNeely, W.A.: Quasi-static approximation for 6 degrees-of-freedom haptic rendering. In: Proc. of the 14th IEEE Vis. Conf. (VIS 2003), pp. 257–262 (2003)

    Google Scholar 

  20. McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Voxel-based 6-dof haptic rendering improvements. Journal of Haptics-e 3(7) (2006)

    Google Scholar 

  21. Otaduy, M.A., Jain, N., Sud, A., Lin, M.C.: Haptic display of interaction between textured models. In: Proc. of the Conf. on Visualization 2004, pp. 297–304 (October 2004)

    Google Scholar 

  22. Otaduy, M.A., Lin, M.C.: A perceptually-inspired force model for haptic texture rendering. In: Proc. of the 1st Symp. on App. Perception in Graphics and Vis., pp. 123–126 (2004)

    Google Scholar 

  23. Otaduy, M.A., Lin, M.C.: Stable and responsive six-degree-of-freedom haptic manipulation using implicit integration. In: Proc. of the 1st Joint Eurohaptics Conf. and Symp. on Hapt. Interf. for Virt. Env. and Tel. Syst., pp. 247–256 (2005)

    Google Scholar 

  24. Otaduy, M.A., Lin, M.C.: A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans. on Robotics 22(4), 751–762 (2006)

    Article  Google Scholar 

  25. Johnson, D.E., Willemsen, P.: Six degree-of-freedom haptic rendering of complex polygonal models. In: Proc. of the 11th Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS 2003), pp. 229–235 (2003)

    Google Scholar 

  26. Johnson, D.E., Willemsen, P., Cohen, E.: Six degree-of-freedom haptic rendering using spatialized normal cone search. IEEE Transactions on Visualization and Computer Graphics 11(6), 661–670 (2005)

    Article  Google Scholar 

  27. Weller, R., Zachmann, G.: A unified approach for physically-based simulations and haptic rendering. In: Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, pp. 151–160 (August 2009)

    Google Scholar 

  28. Vidal, F., John, N., Healey, A., Gould, D.: Simulation of ultrasound guided needle puncture using patient specific data with 3d textures and volume haptics. Journal of Visualization and Computer Animation 19, 111–127 (2008)

    Google Scholar 

  29. Lundin Palmerius, K., Baravdish, G.: Higher precision in volume haptics through subdivision of proxy movements. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 694–699. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Kim, L., Kyrikou, A., Desbrun, M., Sukhatme, G.: An implicit-based haptic rendering technique. In: Proc. of the IEEE/RSJ International Conf. on Intelligent Robots (2002)

    Google Scholar 

  31. Chan, S., Conti, F., Blevins, N., Salisbury, K.: Constraint-based six degree-of-freedom haptic rendering of volume-embedded isosurfaces. In: W. Hapt. Conf. 2011, pp. 89–94 (2011)

    Google Scholar 

  32. Corenthy, L., Martin, J.S., Otaduy, M., Garcia, M.: Volume haptic rendering with dynamically extracted isosurface. In: Proc. of Haptics Symp. 2012, pp. 133–139 (2012)

    Google Scholar 

  33. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–36 (2001)

    Google Scholar 

  34. Barbic, J., James, D.: Time-critical distributed contact for 6-dof haptic rendering of adaptively sampled reduced deformable models. In: Proc. of the 2007 ACM SIGGRAPH/Eurogr. Symp. on Comp. Animation, pp. 171–180 (2007)

    Google Scholar 

  35. Barbic, J.: Real-time reduced large-deformation models and distributed contact for computer graphics and haptics. PhD thesis, Carnegie Mellon University, Pittsburgh (2007)

    Google Scholar 

  36. Kuroda, Y., Nakao, M., Hacker, S., Kuroda, T., Oyama, H., Komori, M., Matsuda, T., Takahashi, T.: Haptic force feedback with an interaction model between multiple deformable objects for surgical simulations. In: Proceedings of Eurohaptics 2002, pp. 116–121 (July 2002)

    Google Scholar 

  37. Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M.A.: Haptics in minimally invasive surgical simulation and training. IEEE Computer Graphics and Applications 24(2), 56–64 (2004)

    Article  Google Scholar 

  38. De, S., Lim, Y.J., Manivannan, M., Srinivasan, M.A.: Physically realistic virtual surgery using the point-associated finite field (paff) approach. Presence: Teleoperators and Virtual Environments 15(3), 294–308 (2006)

    Article  Google Scholar 

  39. Otaduy, M.A., Gross, M.: Transparent rendering of tool contact with compliant environments. In: Proc. of the 2nd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virt. Env. and Teleoperator Systems, pp. 225–230 (2007)

    Google Scholar 

  40. Galoppo, N., Tekin, S., Otaduy, M.A., Gross, M., Lin, M.C.: Interactive haptic rendering of high-resolution deformable objects. In: Shumaker, R. (ed.) HCII 2007 and ICVR 2007. LNCS, vol. 4563, pp. 215–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  41. Luciano, C.J., Banerjee, P., Rizzi, S.H.R.: Gpu-based elastic-object deformation for enhancement of existing haptic applications. In: Proc. of the 3rd Annual IEEE Conf. on Automation Science and Engineering, pp. 146–151 (2007)

    Google Scholar 

  42. Ikits, M., Brederson, J.D., Hansen, C.D., Johnson, C.R.: A constraint-based technique for haptic volume exploration. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003), pp. 263–269 (October 2003)

    Google Scholar 

  43. Chang, Y.H., Chen, Y.T., Chang, C.W., Lin, C.L.: Development scheme of haptic-based system for interactive deformable simulation. Computer-Aided Design 42(5), 414–424 (2010)

    Article  MathSciNet  Google Scholar 

  44. Barbic, J., James, D.L.: Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. on Haptics 1(1), 39–52 (2008)

    Article  Google Scholar 

  45. Garre, C., Otaduy, M.A.: Haptic rendering of complex deformations through handle-space force linearization. In: Proc. of the World Haptics Conf., pp. 422–427 (2009)

    Google Scholar 

  46. Duriez, C., Andriot, C., Kheddar, A.: Signorini’s contact model for deformable objects in haptic simulations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 32–37 (2004)

    Google Scholar 

  47. Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12(1), 36–47 (2006)

    Article  Google Scholar 

  48. Maciel, A., Halic, T., Lu, Z., Nedel, L.P., De, S.: Using the physx engine for physics-based virtual surgery with force feedback. Int. Journal of Medical Robotics and Computer Assisted Surgery 5(3), 341–353 (2009)

    Article  Google Scholar 

  49. Peterlik, I., Duriez, C., Cotin, S.: Asynchronous haptic simulation of contacting deformable objects with variable stiffness. In: 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2608–2613 (2011)

    Google Scholar 

  50. Boettcher, G.: Haptic Interaction with Deformable Objects. Springer (2011)

    Google Scholar 

  51. Boettcher, G., Allerkamp, D., Wolter, F.-E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: Proc. of HAPTEX 2007, pp. 292–299 (October 2007)

    Google Scholar 

  52. Boettcher, G., Allerkamp, D., Gloeckner, D., Wolter, F.-E.: Haptic two-finger contact with textiles. Visual Computer 24(10), 911–922 (2008)

    Article  Google Scholar 

  53. Salsedo, F., Fontana, M., Tarri, F., Ruffaldi, E., Bergamasco, M., Magnenat-Thalmann, N., Volino, P., Bonanni, U., Brady, A., Summers, I., Qu, J., Allerkamp, D., Boettcher, G., Wolter, F.-E., Makinen, M., Meinander, H.: Architectural design of the haptex system. In: Proc. of the HAPTEX 2005 Workshop on Haptic and Tactile Perception of Deformable Objects (peer-reviewed), pp. 1–7 (December 2005)

    Google Scholar 

  54. Magnenat-Thalmann, N., Volino, P., Bonanni, U., Summers, I.R., Bergamasco, M., Salsedo, F., Wolter, F.-E.: From physics-based simulation to the touching of textiles: The haptex project. Int. Journal of Virtual Reality 6(3), 35–44 (2007)

    Google Scholar 

  55. Fontana, M., Marcheschi, S., Tarri, F., Salsedo, F., Bergamasco, M., Allerkamp, D., Boettcher, G., Wolter, F.-E., Brady, A.C., Qu, J., Summers, I.R.: Integrating force and tactile rendering into a single vr system. In: Proc. of HAPTEX 2007, pp. 277–284 (October 2007)

    Google Scholar 

  56. Allerkamp, D., Boettcher, G., Wolter, F.-E., Brady, A.C., Qu, J., Summers, I.R.: A vibrotactile approach to tactile rendering. Vis. Computer 23(2), 97–108 (2007)

    Article  Google Scholar 

  57. Allerkamp, D.: Tactile Perception of Textiles in a Virtual-Reality System, vol. 10. Springer, Heidelberg (2011)

    Google Scholar 

  58. Volino, P., Davy, P., Bonanni, U., Magnenat-Thalmann, N., Boettcher, G., Allerkamp, D., Wolter, F.-E.: From measured physical parameters to the haptic feeling of fabric. In: Proc. of the HAPTEX 2005 Workshop on Haptic and Tactile Perception of Deformable Objects (peer-reviewed), pp. 17–29 (December 2005)

    Google Scholar 

  59. Boettcher, G., Allerkamp, D., Wolter, F.-E.: Multi-rate coupling of physical simulations for haptic interaction with deformable objects. Visual Computer 26(6-8), 903–914 (2010)

    Article  Google Scholar 

  60. Hadwiger, M., Ljung, P., Salama, C.R., Ropinski, T.: Advanced illumination techniques for gpu-based volume raycasting. In: ACM SIGGRAPH 2009 Courses (2009)

    Google Scholar 

  61. Kruger, J., Westermann, R.: Acceleration techniques for gpu-based volume rendering. In: Proc. of the 14th IEEE Visualization 2003 (VIS 2003), pp. 287–292 (October 2003)

    Google Scholar 

  62. Levoy, M.: Efficient ray tracing of volume data. ACM Transactions on Graphics 9(3), 245–261 (1990)

    Article  MATH  Google Scholar 

  63. Mensmann, J., Ropinski, T., Hinrichs, K.: Accelerating volume raycasting using occlusion frustums. In: IEEE/EG Int. Symp. on Vol. and Point-Based Graphics, pp. 147–154 (2008)

    Google Scholar 

  64. Engel, K., Hadwiger, M., Kniss, J.M., Lefohn, A.E., Salama, C.R., Weiskopf, D.: Real-time volume graphics. ACM SIGGRAPH 2004 Course Notes (2004)

    Google Scholar 

  65. Ropinski, T., Kasten, J., Hinrichs, K.H.: Efficient shadows for gpu-based volume raycasting. In: Proc. of the 16th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2008), pp. 17–24 (2008)

    Google Scholar 

  66. Vlasov, R., Friese, K.-I., Wolter, F.-E.: Ray casting for collision detection in haptic rendering of volume data. In: I3D 2012 Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, p. 215 (March 2012)

    Google Scholar 

  67. Bruckner, S.: Efficient volume visualization of large medical datasets. Master’s thesis, Vienna University of Technology, Austria (May 2004)

    Google Scholar 

  68. Stoodley, M., Fulton, M., Dawson, M., Sciampacone, R., Kacur, J.: Real-time Java, Part 1: Using Java code to program real-time systems (April 2007)

    Google Scholar 

  69. Oracle: Sun java real-time system 2.2 update 1 technical documentation (April 2010), http://download.oracle.com/javase/realtime/rts_productdoc_2.2u1.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vlasov, R., Friese, KI., Wolter, FE. (2013). Haptic Rendering of Volume Data with Collision Detection Guarantee Using Path Finding. In: Gavrilova, M.L., Tan, C.J.K., Kuijper, A. (eds) Transactions on Computational Science XVIII. Lecture Notes in Computer Science, vol 7848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38803-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38803-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38802-6

  • Online ISBN: 978-3-642-38803-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics