Skip to main content

Beyond Mutualism: Complex Mycorrhizal Interactions

  • Chapter
  • First Online:

Part of the book series: Progress in Botany ((BOTANY,volume 75))

Abstract

The soil–plant–fungal matrix is inherently complex. There are thousands of species, highly variable environments in time and space, multiple interactions within a range of resources, and exchanges between multiple trophic levels. Here, we look at the structure of that complexity to see if there are emergent properties that allow us to understand that complexity. We emphasize our work from Mediterranean-type ecosystems in California and Oregon, but the perspective is valid across biomes. We examine a diversity of mycorrhizal types, with an emphasis on interactions of arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) with host plants. These taxonomically different fungi differ in structural and biochemical properties including hyphal growth patterns and enzymatic capabilities. Because the symbionts are fungi, their hyphae connect multiple plants, forming networks. Materials (C, N, P, and water) are exchanged between plants through mycorrhizal networks. Importantly, networks themselves have structural properties that confer stability or instability and control the directions of flows. Thus, network theory has the ability to resolve patterns of elemental transfers and exchanges, and thus the outcomes for plant community dynamics. Also importantly, hyphae and fine roots have limited life spans, making interactions highly dynamic. Together, these dynamic interactions will help us unravel the complex relationships and the evolutionary histories that result in community and ecosystem dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albarracin MV (2011) Ectomycorrhizal functional diversity: carbon and nitrogen transfers in Pinus sabiniana-ECM symbiosis and ECM ecoenzymatic responses to resource availability. Ph.D. Dissertation, University of California, Davis

    Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF (2006) Water dynamics of mycorrhizas in arid soils. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 74–97

    Chapter  Google Scholar 

  • Allen MF (2008) Water relations in the mycorrhizosphere. Prog Bot 70:257–276

    Article  Google Scholar 

  • Allen MF (2009) Commentary. Bidirectional water flows through the soil-fungal-plant mycorrhizal continuum. New Phytol 182:290–293

    Article  PubMed  Google Scholar 

  • Allen MF (2011) Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. J Arid Land 3:155–163

    Article  Google Scholar 

  • Allen EB, Allen MF (1986) Water relations of xeric grasses in the field: interactions of mycorrhizae and competition. New Phytol 104:559–571

    Article  Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of vesicular-arbuscular mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Article  Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and nonmycorrhizal Bouteloua gracilis H.B.K. Lag ex Steud. New Phytol 88:683–693

    Article  Google Scholar 

  • Allen MF, MacMahon JA, Andersen DC (1984) Reestablishment of endogonaceae on Mount St. Helens: survival of residuals. Mycologia 76:1031–1038

    Article  Google Scholar 

  • Allen MF, Lansing J, Allen EB (2002) The role of mycorrhizal fungi in composition and dynamics of plant communities: a scaling issue. Prog Bot 63:344–367

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Crisafulli CM, Morris SJ, Egerton-Warburton LM, MacMahon JA, Trappe JM (2005) Mycorrhizae and Mount St. Helens: story of a symbiosis. In: Dale VH, Frederick J, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, pp 221–231

    Chapter  Google Scholar 

  • Allen MF, Vargas R, Graham E, Swenson W, Hamilton M, Taggart M, Harmon TC, Rat’ko A, Rundel P, Fulkerson B, Estrin D (2007) Soil sensor technology: life within a pixel. Bioscience 57:859–867

    Article  Google Scholar 

  • Allen MF, Allen EB, Lansing JL, Pregitzer KS, Hendrick RL, Ruess RW, Collins SL (2010) Responses to chronic N fertilization of ectomycorrhizal piñon but not arbuscular mycorrhizal juniper in a piñon-juniper woodland. J Arid Environ 74:1170–1176

    Article  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169(2):345–354

    Article  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Beiler JK, Durall DM, Simard SW, Maxwel SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Berch SM, Allen TR, Berbee ML (2002) Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant Soil 244:55–66

    Article  CAS  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). New Phytol 9:1639–1649

    CAS  Google Scholar 

  • Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:140–160

    Article  Google Scholar 

  • Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol 194:307–312

    Article  PubMed  Google Scholar 

  • Cheng XM, Bledsoe CS (2002) Contrasting seasonal patterns of fine root production for blue oaks (Quercus douglasii) and annual grasses in California oak woodland. Plant Soil 240(2):263–274

    Article  CAS  Google Scholar 

  • Cheng XM, Bledsoe CS (2004) Competition for inorganic and organic N competition by blue oak (Quercus douglasii) seedlings, an annual grass and soil microorganisms in a pot study. Soil Biol Biochem 36(1):135–144

    Article  CAS  Google Scholar 

  • Cheng XM, Bledsoe CS (2005) Effects of annual grass senescence on 15NH4+ and 15N-glycine uptake by blue oak (Quercus douglasii) seedlings and soil microorganisms in California oak woodland. Soil Biol Biochem 37:551–559

    Article  CAS  Google Scholar 

  • Denison RF, Bledsoe CS, Kahn M, O'Gara F, Simms EL, Thomashow LS (2003) Cooperation in the rhizosphere and the “free rider” problem. Ecology 84(4):838–845

    Article  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164(2):375–382

    Article  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–343

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2008) Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought. Plant Signal Behav 3:68–711

    Article  PubMed  Google Scholar 

  • Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ, Robles-Casolco S (2013) The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Plant Soil 362:37–50. doi:10.1007/s11104- 012-1175-x

    Article  CAS  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Frank JL, Anglin S, Carrington EM, Taylor DS, Viratos B, Southworth D (2009) Rodent dispersal of mycorrhizal inoculum to Quercus garryana seedlings promotes range expansion. Botany 87:821–829

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cortrufo F, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Hatch AB (1937) The physical basis of mycotrophy in Pinus. Black Rock For Bull 6:1–168

    Google Scholar 

  • Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • He XH, Critchley C, Bledsoe CS (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (mycorrhizal networks). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • He XH, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151

    Article  CAS  PubMed  Google Scholar 

  • He XH, Horwath WR, Zasoski RJ, Aanderud Z, Bledsoe CS (2007) Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Quercus garryana, and Quercus agrifolia seedlings grown in a northern California oak woodland. Mycorrhiza 18:33–41

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Colpaert JV (2004) Nitrogen availability and mycorrhizal colonization influence water use efficiency and carbon isotope patterns in Pinus sylvestris. New Phytol 164:515–525

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Hubbert KR, Beyers JL, Graham RC (2001) Roles of weathered bedrock and soil I seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Can J For Res 31:1947–1957

    Google Scholar 

  • Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS (2010) A molecular survey of ectomycorrhizal hyphae in a California Quercus-Pinus woodland. Mycorrhiza 20:265–274

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa CS, Bledsoe CS (2000) Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oak: evidence for hydraulic lift. Oecologia 125:459–465

    Article  Google Scholar 

  • Jin H, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Kitajima K, Anderson KE, Allen MF (2010) Effect of soil temperature and soil water content on fine root turnover rate in a California mixed-conifer ecosystem. J Geophys Res 115, G04032

    Article  Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Boddy L, Read DJ (2005) Is diversity of mycorrhizal fungi important for ecosystem functioning? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, New York, pp 216–235

    Chapter  Google Scholar 

  • Lindahl AE (2002) Ecto- and arbuscular mycorrhizal fungi in transplanted oak seedlings in a southern California oak (Quercus agrifolia: Fagaceae) grassland ecosystem. M.S. Thesis, University of California, Riverside, CA

    Google Scholar 

  • MacMahon JA, Schimpf DJ, Andersen DC, Smith KG, Bayne RL Jr (1979) An organism-centered approach to some community and ecosystem concepts. J Theor Biol 88:287–307

    Article  Google Scholar 

  • McDonald KR, Pennell J, Frank JL, Southworth D (2010) Ectomycorrhizae of Cercocarpus ledifolius (Rosaceae). Am J Bot 97:1867–1872

    Article  PubMed  Google Scholar 

  • Meding SM (2007) The function of common mycorrhizal networks on the transfer of nutrients between oak woodland plants of the Sierra foothills. Ph.D. Dissertation, University of California, Davis

    Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547

    Article  CAS  PubMed  Google Scholar 

  • Morris MH, Pérez- Pérez MA, Smith ME, Bledsoe CS (2008a) Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 18:375–383

    Article  PubMed  Google Scholar 

  • Morris MH, Smith ME, Rizzo DM, Rejmanek M, Bledsoe CS (2008b) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176

    Article  PubMed  Google Scholar 

  • Morris MH, Pérez- Pérez MA, Smith ME, Bledsoe CS (2009) Influence of host species on ectomycorrhizal communities associated with two co-occurring oaks (Quercus spp.) in a tropical cloud forest. FEMS Microbiol Ecol 69:274–287

    Article  CAS  PubMed  Google Scholar 

  • Moser AM, Frank JL, D’Allura JA, Southworth D (2009) Mycorrhizal communities of Quercus garryana on serpentine soils exhibit edaphic tolerance. Plant Soil 315:185–194

    Article  CAS  Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Nelson LL, Allen EB (2006) Restoration of Stipa pulchra grasslands: effects of mycorrhizae and competition from Avena barbata. Restor Ecol 1:40–50

    Article  Google Scholar 

  • Öpik M, Moora M (2012) Missing nodes and links in mycorrhizal networks. New Phytol 194:304–306

    Article  PubMed  Google Scholar 

  • Orlov AY (1957) Observations on absorbing roots of spruce (Picea excelsa Link) under natural conditions. Botanisches Zentralblatt 42:1172–1180

    Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    Article  PubMed  Google Scholar 

  • Querejeta JI, Allen MF, Caravaca F, Roldan A (2006) Differential modulation of host plant δ13C and δ18O by native and non-native arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387

    Article  CAS  PubMed  Google Scholar 

  • Querejeta JI, Allen MF, Alguacil MM, Roldan A (2007a) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct Plant Biol 34:683–691

    Article  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007b) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol Biochem 39:409–417

    Article  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662

    Article  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355(1–2):63–73

    Article  CAS  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Read DJ (1997) The ties that bind. Nature 388:517–518

    Article  CAS  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH (ed) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, UK, pp 193–217

    Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Selosse M-A, Gardes M (2009) Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter? FEMS Microbiol Ecol 68:14–24

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen MF, Maurer G (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662

    Article  Google Scholar 

  • Selosse MA, Richard F, He XH, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Simard SW (2012) Mycorrhizal networks and seedling establishment in Doublas-fir forests. In: Southworth D (ed) Biocomplexity of plant–fungal interactions. Wiley-Blackwell, Hoboken, NJ, pp 85–107

    Chapter  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between tree species with shared ectomycorrhizal fungi. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, New York, pp 34–74

    Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Smith JE, Johnson KA, Cazares E (1998) Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7:279–285

    Article  Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  CAS  PubMed  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego W (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5(10):e13324

    Article  PubMed  Google Scholar 

  • Southworth D (ed) (2012) Biocomplexity in plant-fungal interactions. Wiley-Blackwell, Hoboken, NJ, pp 1–4, 205–213

    Google Scholar 

  • Southworth D, He XH, Swenson W, Bledsoe CS, Horwath WR (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595

    Article  CAS  PubMed  Google Scholar 

  • Stahl E (1900) Der Sinn der Mycorrhizenbildung. Jahrbücher für wissenschaftliche Botanik 34:539–668

    Google Scholar 

  • Stout DL (2004) Factors influencing N transfers among understory plants in a California blue oak woodland. M.S. Thesis, University of California, Davis

    Google Scholar 

  • Suz LM, Azul AM, Morris MH, Bledsoe CS, Martin MP (2008) Morphotyping and molecular methods to characterize ectomycorrhizal roots and hyphae in soil. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York, pp 437–474

    Chapter  Google Scholar 

  • Teste FP, Simard SW, Durall DM (2009a) Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol 2(1):21–30

    Article  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009b) Access to mycorrhizal networks and tree roots: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2000) Black boxes and missing sinks: fungi in global change research. Mycol Res 104:1282–1283

    Article  Google Scholar 

  • Treseder KK, Masiello CA, Lansing JL, Allen MF (2004) Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia 138:419–425

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL (2005) Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant Soil 270:249–255

    Article  CAS  Google Scholar 

  • Valentine LL, Fiedler TL, Hart AN, Peterson CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135

    Article  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determined plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bledsoe, C.S., Allen, M.F., Southworth, D. (2014). Beyond Mutualism: Complex Mycorrhizal Interactions. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_10

Download citation

Publish with us

Policies and ethics