Skip to main content

A Review of DC Micro-grid Protection

  • Conference paper
Advances in Brain Inspired Cognitive Systems (BICS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7888))

Included in the following conference series:

Abstract

In this paper, an overview of DC micro-grid is described, which includes the status of DC micro-grid protection and its future development. The paper presents the key techniques of DC micro-grid protection. So far, standards, guidelines and techniques for DC micro-grid protection are well behind AC system. This paper summarizes the protective devices and protective methods of different DC micro-grid structures. The protective devices include fuses, circuit breakers and power-electronic switches. According to a series of research achievements, the paper points out the technological gaps and proposes some ideas for DC micro-grid protection in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu, X.: New high voltage direct current power supply system for data communication Equipment abroad. Designing Techniques of Postes and Telecommunication (2009)

    Google Scholar 

  2. My Ton, Brian Fortenbery.: DC Power for Improved Data Center Efficiency [R/OL] (2008)

    Google Scholar 

  3. Ciezki, J.G., Ashton, R.W.: Selection and stability issues associated with a navy shipboard DC zonal electric distribution system. IEEE Transactions on Power Delivery (2000)

    Google Scholar 

  4. Su, C.L., Yeh, C.T.: Probabilistic security analysis of shipboard DC zonal electrical distribution systems. In: IEEE Power and Energy Society General Meeting (2008)

    Google Scholar 

  5. Kakigano, H., Miura, Y., Ise, T.: Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house. In: 2008 IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA (2008)

    Google Scholar 

  6. REbusTM DC Microgrid: Technical Overview (2010)

    Google Scholar 

  7. Marnay, C., Rubio, F., Siddiqui, A.: Shape of the microgrid. In: IEEE Power Engineering Society Winter Meeting, pp. 150–153 (2001)

    Google Scholar 

  8. Lu, W., Ooi, B.T.: Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators. IEEE Trans. Power Electron 17(4), 558–563 (2002)

    Article  Google Scholar 

  9. Lu, W., Ooi, B.T.: Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source hvdc. IEEE Trans. 18(1), 201–206 (2003)

    Google Scholar 

  10. Wang, H., He, B.: Transmission Line Aggrate Protection and Its Implementation. Power System Technology (2005)

    Google Scholar 

  11. Paul, D.: DC traction power system grounding. IEEE Transactions on Industry Applications 38(3), 818–824 (2002)

    Article  Google Scholar 

  12. Sutherland, P.: DC short-circuit analysis for systems with static sources. IEEE Trans. Ind. Appl. 35(1), 144–151 (1999)

    Article  Google Scholar 

  13. Feng, X., Ye, Z., Liu, C., Zhang, R., Lee, F., Boroyevich, D.: Fault detection in dc distributed power systems based on impedance characteristics of modules. In: Proc. Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meeting, Rome, Italy, October 8-12, vol. 4, pp. 2455–3462 (2000)

    Google Scholar 

  14. Cuzner, R.M., Venkataramanan, G.: The status of DC micro-grid protection. In: IEEE Industry Applications Society Annual Meeting, Edmonton, Alberta, Canada (2008)

    Google Scholar 

  15. Brozek, J.P.: DC Overcurrent Protection—Where We Stand. IEEE Transactions on Industry Applications 29(5), 1029–1032 (1993)

    Article  Google Scholar 

  16. Gregory, G.D.: Applying Low Voltage Circuit Breakers in Direct-Current Systems. IEEE Transactions on Industry Applications, 650–657 (1995)

    Google Scholar 

  17. IEEE Guide for the Protection of Stationary Battery Systems. IEEE Std.1375-1998 (1998)

    Google Scholar 

  18. Baran, M., Mahajan, N.R.: PEBB based DC system protection: opportunities and challenges. In: Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, PES TD 2005/2006, Dallas, TX, USA (2006)

    Google Scholar 

  19. Siu, A.: Discrimination of miniature circuit breakers in a telecommunication DC power system. In: Telecommunications Energy Conference, pp. 448–453 (1997)

    Google Scholar 

  20. Yao, G., Wang, Z.: A Circuit Structure of High Voltage Direct Current Circuit Breaker and Its Test Methods. In: CESSE (2011)

    Google Scholar 

  21. Genji, T., Nakamura, O., Isozaki, M., Yamada, M., Morita, T., Kaneda, M.: 400 V class high-speed current limiting circuit breaker for electric power system. IEEE Transactions on Power Delivery 9(3), 1428–1435 (1994)

    Article  Google Scholar 

  22. Krstic, S., Wellner, E., Bendre, A., Semenov, B.: Circuit Breaker Technologies for Advanced Ship Power Systems. In: IEEE Electric Ship Technology Symposium (2007)

    Google Scholar 

  23. ABB circuit breakers for direct current applications (2009)

    Google Scholar 

  24. Shimizu, T., Jin, Y., Kimura, G.: DC ripple current reduction on a single-phase PWM voltage-source rectifier. IEEE Transactions on Industry Applications (2000)

    Google Scholar 

  25. Krstic, S., Wellner, E., Bendre, A., Semenov, B.: Circuit Breaker Technologies for Advanced Ship Power Systems. In: IEEE Electric Ship Technology Symposium (2007)

    Google Scholar 

  26. Commerton, J., Zahzah, M., Khersonsky, Y.: Solid state transfer switches and current interruptors for mission-critical shipboard power systems. In: IEEE Electric Ship Technologies Symposium (2005)

    Google Scholar 

  27. Tennakoon, S., McEwan, P.: Short-circuit interruption performance of thyristor circuit breakers. In: Proc. IEEE APEC, Orlando, FL, vol. 2, pp. 832–838 (1994)

    Google Scholar 

  28. Meyer, J.M., Rufer, A.: A dc hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (igcts). IEEE Trans. Power Del. 21(2), 646–651 (2006)

    Article  Google Scholar 

  29. Brice, C.W., Dougal, R.A., Hudgins, J.L.: Review of Technologies for Current-Limiting Low-Voltage Circuit Breakers. IEEE Transactions on Industry Applications (1996)

    Google Scholar 

  30. Chunlian, J., Dougal, R.: Current Limiting Technique Based Protection Strategy for an Industrial DC Distribution System. In: IEEE International Symposium on Industrial Electronics, vol. 2, pp. 820–825 (2006)

    Google Scholar 

  31. Crowley, T., O’Brien, H., Shaheen, W.: Evaluation of 10 kV, 80 kA Si SGTO Switching Components for Army Pulsed Power Applications. In: Power Modulator Symposium Conference Record, May 14-18, pp. 240–243 (2006)

    Google Scholar 

  32. Cairoli, P., Kondratiev, I., Dougal, R.: Ground Fault Protection for DC Bus Using Controlled Power Sequencing. In: IEEE SoutheastCon 2010 Conference: Energizing Our Future, Charlotte-Concord, NC, USA (2010)

    Google Scholar 

  33. Lee, F.C.: Sustainable Buildings and Nanogrids (2010)

    Google Scholar 

  34. Weimin, W., Yuanbin, H., Pan, G.: Key Technologies for DC Micro-Grids. Transactions of China Electrotechnical Society 1(1), 98–106 (2012)

    Google Scholar 

  35. IEEE Recommended Practice for the Design of DC Auxiliary Power Systems for Generating Stations. IEEE Std. 946-2004 (2004)

    Google Scholar 

  36. Low-Voltage Electrical Installations, IEC 60 364-1 (2005)

    Google Scholar 

  37. Paul, D.: DC Traction Power System Grounding. IEEE Trans. Ind. Appl. 38(3), 818–824 (2002)

    Article  Google Scholar 

  38. Salomonsson, D., Söder, L., Sannino, A.: An Adaptive Control System for a DC Microgrid for Data Centers. IEEE Transactions on Power Delivery 24(3), 1405–1414 (2009)

    Article  Google Scholar 

  39. IEEE Guide for the Protection of Stationary Battery Systems, IEEE Std. 1375-1998 (1998)

    Google Scholar 

  40. ABB Power Breaker Catalogue (2009)

    Google Scholar 

  41. Evox Rifa Electrolytic Capacitors, EVOX RIFA (2007)

    Google Scholar 

  42. Tang, L., Ooi, B.-T.: Locating and Isolating DC Faults in Multi- Terminal DC Systems. IEEE Transactions on Power Delivery 22(3), 1877–1884 (2007)

    Article  Google Scholar 

  43. Baran, M., Mahajan, N.R.: DC Distribution for Industrial Systems: Opportunities and Challenges. IEEE Trans. Ind. Appl. 39(6), 1596–1601 (2003)

    Article  Google Scholar 

  44. Baran, M., Mahajan, N.: Overcurrent Protectiong on Voltage-Source-Converter-Based Multiterminal DC Distribution Systems. IEEE Transactions on Power Delivery 22(1), 406–412 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, Y., Ning, J., Huang, Y., Jia, J., Jian, Z. (2013). A Review of DC Micro-grid Protection. In: Liu, D., Alippi, C., Zhao, D., Hussain, A. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2013. Lecture Notes in Computer Science(), vol 7888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38786-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38786-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38785-2

  • Online ISBN: 978-3-642-38786-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics