Skip to main content

EEG Signal Classification Using the Event-Related Coherence and Genetic Algorithm

  • Conference paper
Advances in Brain Inspired Cognitive Systems (BICS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7888))

Included in the following conference series:

Abstract

The reliable operation of brain-computer interfaces (BCIs) based on spontaneous electroencephalogram (EEG) signals requires an accurate classification and recognition of multichannel EEG. The design of EEG representations and classifiers for BCI are open research questions whose difficulty stems from the need to extract complex spatial and temporal patterns from noisy multidimensional time series obtained from EEG measurements. This paper proposes a Genetic algorithm (GA) and Support Vector Machine (SVM) hybrid approach to accomplish this EEG classification task for potential BCI applications. An Oddball stimulus program and evoked event-related coherence program were designed to evaluate our method. The present study systematically evaluates the performance of the one channel pair event-related coherence feature set for EEG signal classification of auditory task. A GA approach for feature selection is presented which used to reduce the dimension of event-related coherence feature parameters. With the base classifiers of SVM, classification experiments are carried out upon real EEG recordings. Experimental results suggest the feasibilities of the new feature set, and we also derive some valuable conclusions on the performance of the EEG signal classification methods. The high recognition rates and the method’s procedural and computational simplicity make it a particularly promising method for achieving real-time BCI system based on evoked potential event-related coherence in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Šťastný, J., Sovka, P., Stančák, A.: EEG Signal Classification: Introduction to the Problem. Radioengineering 12, 51–55 (2003)

    Google Scholar 

  2. Curran, E.A., Stokes, M.J.: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn. 51, 326–336 (2003)

    Article  Google Scholar 

  3. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: International Symposium on Modern Computing, pp. 52–57 (2006)

    Google Scholar 

  4. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of Linear and Nonlinear Methods for EEG Signal Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 141–144 (2003)

    Article  Google Scholar 

  5. Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: Bci competition data set iib: support vector machines for the p300 speller paradigm. IEEE Transactions on Biomedical Engeneering 51(6), 1073–1076 (2004)

    Article  Google Scholar 

  6. Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: Eeg-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology 103, 642–651 (1997)

    Article  Google Scholar 

  7. Chiappa, S., Bengio, S.: Hmm and iohmm modeling of eeg rhythms for asynchronous bci systems. In: European Symposium on Artificial Neural Networks, ESANN (2004)

    Google Scholar 

  8. Millan, J.R., Mourino, J.: Asynchronous BCI and local neural classifiers: An overview of the Adaptive Brain Interface project. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Special Issue on Brain-Computer Interface Technology (2003)

    Google Scholar 

  9. Penny, W.D., Roberts, S.J., Curran, E.A., Stokes, M.J.: Eeg-based communication: a pattern recognition approach. IEEE Transactions on Rehabilitation Engeneering 8(2), 214–215 (2000)

    Article  Google Scholar 

  10. Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of eeg signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Transactions on Rehabilitation Engineering 6(3) (1998)

    Google Scholar 

  11. Wang, T., Deng, J., He, B.: Classifying eeg-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clinical Neurophysiology 115(12), 2744–2753 (2004)

    Article  Google Scholar 

  12. Qin, L., Ding, L., He, B.: Motor imagery classification by means of source analysis for brain computer interface applications. Journal of Neural Engineering, 135–141 (2004)

    Google Scholar 

  13. Kamousi, B., Liu, Z., He, B.: Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13, 166–171 (2005)

    Article  Google Scholar 

  14. Congedo, M., Lotte, F., Lecuyer, A.: Classification of movement intention by spatially filtered electromagnetic inverse solutions. Physics in Medicine and Biology 51(8), 1971–1989 (2006)

    Article  Google Scholar 

  15. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces. Journal of Neural Engineering 4 (2007)

    Google Scholar 

  16. Sun, S., Zha, C.: An optimal kernel feature extractor and its application to EEG signal classification. Neurocomputing 69, 1743–1748 (2006)

    Article  Google Scholar 

  17. Inouye, T., Shinosaki, K., Iyama, A., Matsumoto, Y.: Localization of activated areas and directional EEG patterns during mental arithmetic. Electroencephalography and Clinical Neurophysiology 86(4), 224–230 (1993)

    Article  Google Scholar 

  18. Anderson, C.W., Devulapalli, S.V., Stolz, E.A.: Determining mental state from EEG signals using neural networks. Scientific Programming 4(3), 171–183 (1995)

    Google Scholar 

  19. Anderson, C.W., Devulapalli, S.V., Stolz, E.A.: EEG signal classification with different signal representations. In: Girosi, F., Makhoul, J., Manolakos, E., Wilson, E. (eds.) Neural Networks for Signal Processing V, pp. 475–483. IEEE Service Center, Piscataway (1995)

    Google Scholar 

  20. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  21. Neuroscan Edit4.5.American

    Google Scholar 

  22. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. Intelligent Systems and their Applications, 44–49 (1998); Iowa State Univ.

    Google Scholar 

  23. Ren, J., Qiu, Z., Fan, W., Cheng, H., Yu, P.S.: Forward Semi-Supervised Feature Selection. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 970–976. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Bu, H., Zheng, S., Xia, J.: Genetic algorithm based Semi-feature selection method. In: 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, pp. 521–524 (2009)

    Google Scholar 

  25. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  26. Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG based discrimination between imagination of right and left hand movement. Electroenc. Clin. Neurophys 103(5), 1–10 (1997)

    Google Scholar 

  27. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci2000: a generalpurpose brain-computer interface (bci) system. IEEE Transactions on Biomedical Engeneering 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  28. Thulasidas, M., Guan, C., Wu, J.: Robust Classification of EEG Signal for Brain–Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(1) (2006)

    Google Scholar 

  29. Sun, S., Zhang, C., Zhang, D.: An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters 28, 2157–2163 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, C., Li, H., Ma, L. (2013). EEG Signal Classification Using the Event-Related Coherence and Genetic Algorithm. In: Liu, D., Alippi, C., Zhao, D., Hussain, A. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2013. Lecture Notes in Computer Science(), vol 7888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38786-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38786-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38785-2

  • Online ISBN: 978-3-642-38786-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics