Skip to main content

Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Drescher, W. Boedeker, Biometrics 51, 716–730 (1995)

    Google Scholar 

  2. W.H. Konemann, M.N. Pieters, Food Chem. Toxicol. 34, 1025–1031 (1996)

    Article  Google Scholar 

  3. F.R. Cassee, J.P. Groten, P.J. van Bladeren, V.J. Feron, Crit. Rev. Toxicol. 28, 73–101 (1998)

    Article  Google Scholar 

  4. G.J.A. Speijers, M.H.M. Speijers, Toxicol. Lett. 153, 91–98 (2004)

    Google Scholar 

  5. M.M. Mumtaz, D.B. Tully, H.A. El-Masri, C.T. De Rosa, Environ. Health Perspect. 110, 947–956 (2002)

    Article  Google Scholar 

  6. R.C. Rocha-e-Silva, L.A.V. Cordeiro, B. Soto-Blanco, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151, 294–297 (2010)

    Google Scholar 

  7. J.P. Groten, V.J. Feron, J. Suhnel, Trends Pharmacol. Sci. 22, 316–322 (2001)

    Article  Google Scholar 

  8. M. Aufderheide, Exp. Toxicol. Pathol. 60, 163–180 (2008)

    Article  Google Scholar 

  9. D. Krewski, D. Acosta, M. Andersen et al., J. Toxicol. Environ. Health B Crit. Rev. 13, 51–138 (2010)

    Google Scholar 

  10. G. Ulrich-Merzenich, D. Panek, H. Zeitler, H. Vetter, H. Wagner, Indian J. Exp. Biol. 48, 208–219 (2010)

    Google Scholar 

  11. K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schon, M. Roth, J.M. Köhler, J. Metze, Lab Chip 3, 202–207 (2003)

    Google Scholar 

  12. A. Grodrian, J. Metze, T. Henkel, K. Martin, M. Roth, J.M. Köhler, Biosens. Bioelectron. 19, 1421–1428 (2004)

    Google Scholar 

  13. A. Aharoni, G. Amitai, K. Bernath, S. Magdassi, D.S. Tawfik, Chem. Biol. 12, 1281–1289 (2005)

    Google Scholar 

  14. J.T. Schumacher, A. Grodrian, K. Lemke, R. Romer, J. Metze, Eng. Life Sci. 8, 49–55 (2008)

    Google Scholar 

  15. J.U. Shim, L.F. Olguin, G. Whyte, D. Scott, A. Babtie, C. Abell, W.T.S. Huck, F. Hollfelder, J. Am. Chem. Soc. 131, 15251–15256 (2009)

    Google Scholar 

  16. M.S. Kim, J.H. Yeon, J.K. Park, Biomed. Microdevices 9, 25–34 (2007)

    Google Scholar 

  17. P.M. van Midwoud, G.M.M. Groothuis, M.T. Merema, E. Verpoorte, Biotechnol. Bioeng. 105, 184–194 (2010)

    Google Scholar 

  18. A. Schober, U. Fernekorn, B. Lubbers, J. Hampl, F. Weise, G. Schlingloff, M. Gebinoga, M. Worgull, M. Schneider, C. Augspurger, C. Hildmann, M. Kittler, M. Donahue, Materialwiss. Werkstofftech. 42, 579–579 (2011)

    Google Scholar 

  19. U. Fernekorn, J. Hampl, F. Weise, C. Augspurger, C. Hildmann, M. Klett, A. Laffert, M. Gebinoga, K.F. Weibezahn, G. Schlingloff, M. Worgull, M. Schneider, A. Schober, Eng. Life Sci. 11, 133–139 (2011)

    Google Scholar 

  20. A. Tirella, M. Marano, F. Vozzi, A. Ahluwalia, Toxicol. In Vitro 22, 1957–1964 (2008)

    Google Scholar 

  21. I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Lab Chip 8, 519–526 (2008)

    Google Scholar 

  22. L. Frenz, K. Blank, E. Brouzes, A.D. Griffiths, Lab Chip 9, 1344–1348 (2009)

    Google Scholar 

  23. C.H.J. Schmitz, A.C. Rowat, S. Koster, D.A. Weitz, Lab Chip 9, 44–49 (2009)

    Google Scholar 

  24. W.W. Shi, H. Wen, Y. Lu, Y. Shi, B.C. Lin, J.H. Qin, Lab Chip 10, 2855–2863 (2010)

    Google Scholar 

  25. J.H. Sung, M.L. Shuler, Bioprocess Biosyst. Eng. 33, 5–19 (2010)

    Article  Google Scholar 

  26. H. Hufnagel, A. Huebner, C. Gulch, K. Guse, C. Abell, F. Hollfelder, Lab Chip 9, 1576–1582, (2009)

    Google Scholar 

  27. J. Clausell-Tormos, C.A. Merten, Front. Biosci. 4, 1768–79 (2012)

    Google Scholar 

  28. O.J. Miller, A. El Harrak, T. Mangeat, J.C. Baret, L. Frenz, B. El Debs, E. Mayot, M.L. Samuels, E.K. Rooney, P. Dieu, M. Galvan, D.R. Link, A.D. Griffiths, Proc. Nat. Acad. Sci. U.S.A. 109, 378–383 (2012)

    Article  ADS  Google Scholar 

  29. Y. Zhu, N. Wu, C.J. East, Front. Biosci. 5, 284–304 (2013)

    Google Scholar 

  30. J.M. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze, Chem. Eng. J. 101, 201–216 (2004)

    Google Scholar 

  31. B. Zheng, J.D. Tice, R.F. Ismagilov, Anal. Chem. 76, 4977–4982 (2004)

    Article  Google Scholar 

  32. J.M. Köhler, T. Kirner, Sens. Actuators A Phys. 119, 19–27 (2005)

    Google Scholar 

  33. B. Zheng, R.F. Ismagilov, Angew. Chem. Int. Ed. 44, 2520–2523 (2005)

    Google Scholar 

  34. J.Q. Boedicker, L. Li, T.R. Kline, R.F. Ismagilov, Lab Chip 8, 1265–1272 (2008)

    Google Scholar 

  35. J. Clausell-Tormos, A.D. Griffiths, C.A. Merten, Lab Chip 10, 1302–1307 (2010)

    Google Scholar 

  36. V. Trivedi, A. Doshi, G.K. Kurup, E. Ereifej, P.J. Vandevord, A.S. Basu, Lab Chip 10, 2433–2442 (2010)

    Google Scholar 

  37. T.S. Kaminski, S. Jakiela, M.A. Czekalska, W. Postek, P. Garstecki, Lab Chip 12, 3995–4002 (2012)

    Google Scholar 

  38. I. Schneegass, J.M. Köhler, J. Biotechnol. 82, 101–121 (2001)

    Google Scholar 

  39. I. Schneegass, R. Brautigam, J.M. Köhler, Lab Chip 1, 42–49 (2001)

    Google Scholar 

  40. A. Funfak, A. Brosing, M. Brand, J.M. Köhler, Lab Chip 7, 1132–1138 (2007)

    Google Scholar 

  41. F. Yang, Z.G. Chen, J.B. Pan, X.C. Li, J. Feng, H. Yang, Biomicrofluidics 5, 024115 (2011)

    Google Scholar 

  42. J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Chemi. Biol. 15, 875–875 (2008)

    Google Scholar 

  43. W.W. Shi, J.H. Qin, N.N. Ye, B.C. Lin, Lab Chip 8, 1432–1435 (2008)

    Google Scholar 

  44. M.M. Crane, K. Chung, J. Stirman, H. Lu, Lab Chip 10, 1509–1517 (2010)

    Google Scholar 

  45. N. Chronis, Lab Chip 10, 432–437 (2010)

    Google Scholar 

  46. R.F. Ismagilov, Angew. Chem. Int. Ed. 42, 4130–4132 (2003)

    Google Scholar 

  47. A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, A.J. Demello, Lab Chip 8, 1244–1254 (2008)

    Google Scholar 

  48. K. Martin, K. Lemke, T. Henkel, BioSpektrum 12, 743–745 (2006)

    Google Scholar 

  49. M. Roth, K. Martin, T. Henkel, in Proceedings of 14th Heiligenstädter Kolloquium, 177–180, (2008)

    Google Scholar 

  50. A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Angew. Chem. Int. Ed. 49, 5846–5868 (2010)

    Google Scholar 

  51. M.E. Vincent, W.S. Liu, E.B. Haney, R.F. Ismagilov, Chem. Soc. Rev. 39, 974–984 (2010)

    Google Scholar 

  52. W.B. Du, M. Sun, S.Q. Gu, Y. Zhu, Q. Fang, Anal. Chem. 82, 9941–9947 (2010)

    Article  Google Scholar 

  53. W. Tanthapanichakoon, N. Aoki, K. Matsuyama, K. Mae, Chem. Eng. Sci. 61, 4220–4232 (2006)

    Article  Google Scholar 

  54. T. Henkel, T. Bermig, M. Kielpinski, A. Grodrian, J. Metze, J.M. Köhler, Chem. Eng. J. 101, 439–445 (2004)

    Google Scholar 

  55. D. Malsch, N. Gleichmann, M. Kielpinski, G. Mayer, T. Henkel, D. Mueller, V. van Steijn, C. R. Kleijn and M. T. Kreutzer, Microfluid. Nanofluid. 8, 497–507, (2010)

    Google Scholar 

  56. W. Wang, C. Yang, Y.S. Liu, C.M. Li, Lab Chip 10, 559–562 (2010)

    Google Scholar 

  57. J.M. Köhler, A. Groß, Microfluid. Nanofluid. 3, 653–663 (2007)

    Google Scholar 

  58. A. Funfak, M. Fischlechner, E. Donath, J.M. Köhler, AICHE Spring National Meeting, Houston/Texas, Conf. Proc., oral paper 121c (2007)

    Google Scholar 

  59. K.R. Strehle, D. Cialla, P. Rosch, T. Henkel, J.M. Köhler, J. Popp, Anal. Chem. 79, 1542–1547 (2007)

    Google Scholar 

  60. A. Marz, T. Henkel, D. Cialla, M. Schmitt, J. Popp, Lab Chip 11, 3584–3592 (2011)

    Google Scholar 

  61. M. Budden, S. Schneider, G.A. Groß, J.M. Köhler, Sens. Actuators A Phys. 189, 288–297 (2013)

    Google Scholar 

  62. P.M. Gunther, S. Schneider, G.A. Groß, J.M. Köhler, in Proceedings of Microsystem Technology Congress Darmstadt, vol. 10, pp. 945–947, (2011)

    Google Scholar 

  63. T. Bergan, I.B. Carlsen, J. Antimicrob. Chemother. 15, 147–152 (1985)

    Article  Google Scholar 

  64. S.R. Ford, R.L. Switzer, Antimicrob. Agents Chemother. 7, 555–563 (1975)

    Article  Google Scholar 

  65. A. Funfak, R. Hartung, J.L. Cao, K. Martin, K.H. Wiesmuller, O.S. Wolfbeis, J.M. Köhler, Sens. Actuators B Chem. 142, 66–72 (2009)

    Google Scholar 

  66. D. Kuersten, J. Cao, A. Funfak, P. Mueller, J.M. Köhler, Eng. Life Sci. 11, 580–587 (2011)

    Google Scholar 

  67. J.L. Cao, D. Kursten, S. Schneider, A. Knauer, P.M. Gunther, J.M. Köhler, Lab Chip 12, 474–484 (2012)

    Google Scholar 

  68. A. Funfak, J.L. Cao, O. Wolfbeis, K. Martin, J.M. Köhler, Microchim. Acta. 164, 279–286 (2009)

    Google Scholar 

  69. R. Di Corato, P. Piacenza, M. Musaro, R. Buonsanti, P.D. Cozzoli, M. Zambianchi, G. Barbarella, R. Cingolani, L. Manna, T. Pellegrino, Macromol. Biosci. 9, 952–958 (2009)

    Article  Google Scholar 

  70. S. Nagl, O.S. Wolfbeis, Analyst 132, 507–511 (2007)

    Google Scholar 

  71. M.I.J. Stich, L.H. Fischer, O.S. Wolfbeis, Chem. Soc. Rev. 39, 3102–3114 (2010)

    Google Scholar 

  72. S.K. Lee, I. Okura, Anal. Commun. 34, 185–188 (1997)

    Article  Google Scholar 

  73. C. Baleizao, S. Nagl, M. Schaferling, M.N. Berberan-Santos, O.S. Wolfbeis, Anal. Chem. 80, 6449–6457 (2008)

    Article  Google Scholar 

  74. J.L. Cao, D. Kursten, S. Schneider, J.M. Köhler, J. Biomed. Nanotechnol. 8, 770–778 (2012)

    Google Scholar 

  75. A. Funfak, J.L. Cao, A. Knauer, K. Martin, J.M. Köhler, J. Environ. Monit. 13, 410–415 (2011)

    Google Scholar 

  76. A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Nanomed. Nanotechnol. Biol. Med. 6, 103–109 (2010)

    Google Scholar 

  77. J.M. Köhler, T. Henkel, Appl. Microbiol. Biotechnol. 69, 113–125 (2005)

    Google Scholar 

  78. J. Park, A. Kerner, M.A. Burns, X.X.N. Lin, Plos One 6, e17019 (2011)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the German Federal Environmental Foundation (DBU) and by the BMBF (OPTIMI project KFZ-16SV3701 and the BactoCat project KFZ-031A161A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, J., Kürsten, D., Funfak, A., Schneider, S., Köhler, J.M. (2014). Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics