Skip to main content

Electrical Sensing in Segmented Flow Microfluidics

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Microfluidic systems require measurement techniques to assess the bioprocesses taking place within these systems. In droplet-based microfluidics, sensing systems have thus far been dominated by the use of optical sensing techniques. Direct electrical measurement of droplets has been quite rare. This chapter describes the use of electrical sensors in droplet-based microfluidics. Electrical sensors offer a possibility to measure the presence/position of droplets but also their electrical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.K. Baxter, Capacitive Sensors: Design and Applications, 1st edn. (IEEE Press, New York, 1997)

    Google Scholar 

  2. W.C. Heerens, Application of capacitance techniques in sensor design. J. Phys. E Sci. Instrum. 19, 897–906 (1986)

    Article  ADS  Google Scholar 

  3. J.P. van der Linden, Liquid-liquid separation in disc-stack centrifuges. Ph.D. Thesis, TU Delft, (1987)

    Google Scholar 

  4. J.M. Köhler, A. Funfak, J. Cao, D. Kürsten, S. Schneider, P.M. Günther, in Addressing of Concentration Spaces for Bioscreenings by Micro Segmented Flow with Microphotometric and Microfluorimetric Detection. In Optical Nano-and Microsystems for Bioanalytics, (Springer Berlin Heidelberg, 2012), pp. 47–81

    Google Scholar 

  5. A. Funfak, J. Cao, O.S. Wolfbeis, K. Martin, J.M. Köhler, Monitoring cell cultivation in microfluidic segments by optical pH sensing with a micro flow-through fluorometer using dye-doped polymer particles. Microchim. Acta 164, 279–286 (2009)

    Article  Google Scholar 

  6. P.M. Günther, F. Möller, T. Henkel, J.M. Köhler, G.A. Groß, Formation of monomeric and novolak azo dyes in nanofluid segments by use of a double injector chip reactor. Chem. Eng. Technol. 28, 520–527 (2005)

    Article  Google Scholar 

  7. J. Schemberg, A. Grodrian, R. Römer, G. Gastrock, K. Lemke, Online optical detection of food contaminants in microdroplets. Eng. Life Sci. 9, 391–397 (2009)

    Article  Google Scholar 

  8. J.Z. Chen, A.A. Darhuber, S.M. Troian, S. Wagner, Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4, 473–480 (2004)

    Article  Google Scholar 

  9. N. Srivastava, M.A. Burns, Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer. Lab Chip 6, 744–751 (2006)

    Article  Google Scholar 

  10. X. Niu, M. Zhang, S. Peng, W. Wen, P. Sheng, Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1, 044101–044112 (2007)

    Article  Google Scholar 

  11. C. Elbuken, T. Glawdel, D. Chan, C.L. Ren, Detection of microdroplet size and speed using capacitive sensors. Sens. Actuators A 171, 55–62 (2011)

    Article  Google Scholar 

  12. J. Nichols, A. Ahmadi, M. Hoorfar, H. Najjaran, J.F. Holzman, In situ digital microfluidic conductance sampling. Sens. Actuators A 152, 13–20 (2009)

    Article  Google Scholar 

  13. M.J. Schertzer, R. Ben-Mrad, P.E. Sullivan, Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing. Sens. Actuators B 145, 340–347 (2010)

    Article  Google Scholar 

  14. M.J. Schertzer, R. Ben-Mrad, P.E. Sullivan, Automated detection of particle concentration and chemical reactions in EWOD devices. Sens. Actuators B 164, 1–6 (2012)

    Article  Google Scholar 

  15. S.C.C. Shih, R. Fobel, P. Kumar, A.R. Wheeler, A feedback control system for high-fidelity digital microfluidics. Lab Chip 11, 535–540 (2011)

    Article  Google Scholar 

  16. M.A. Murran, H. Najjaran, Capacitance-based droplet position estimator for digital microfluidic devices. Lab Chip 12, 2053–2059 (2012)

    Article  Google Scholar 

  17. A. Ernst, W. Streule, N. Schmitt, R. Zengerle, P. Koltay, A capacitive sensor for non-contact nanoliter droplet detection. Sens. Actuators A 153, 57–63 (2009)

    Article  Google Scholar 

  18. A. Ernst, W. Streule, R. Zengerle, P. Koltay, Quantitative volume determination of dispensed nanoliter droplets on the fly, in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International (IEEE, 2009), pp. 1750–1753

    Google Scholar 

  19. A. Ernst, L. Ju, B. Vondenbusch, R. Zengerle, P. Koltay, Noncontact determination of velocity and volume of nanoliter droplets on the fly. Sens. J 11, 1736–1742 (2011)

    Article  Google Scholar 

  20. A. Ernst, K. Mutschler, L. Tanguy, N. Paust, R. Zengerle, P. Koltay, Numerical investigations on electric field characteristics with respect to capacitive detection of free-flying droplets. Sensors 12, 10550–10565 (2012)

    Article  Google Scholar 

  21. M. Takeuchi, Q. Li, B. Yang, P.K. Dasgupta, V.E. Wilde, Use of a capacitance measurement device for surrogate noncontact conductance measurement. Talanta 76, 617–620 (2008)

    Article  Google Scholar 

  22. K. Arshak, D. Morris, A. Arshak, O. Korostynska, K. Kaneswaran, Development of oxide thick film capacitors for a real time pressure monitoring system. Mater. Sci. Eng. C 27, 1406–1410 (2007)

    Article  Google Scholar 

  23. Y. Hotta, Y. Zhang, N. Miki, A flexible capacitive sensor with encapsulated liquids as dielectrics. Micromachines 3, 137–149 (2012)

    Article  Google Scholar 

  24. I.K. Kiplagat, P. Kubán, P. Pelcová, V. Kubán, Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns. J. Chromatogr. A 1217, 5116–5123 (2010)

    Article  Google Scholar 

  25. A.J. Zemann, E. Schnell, D. Volgger, G.K. Bonn, Contactless conductivity detection for capillary electrophoresis. Anal. Chem. 70, 563–567 (1998)

    Article  Google Scholar 

  26. R.M. Guijt, C.J. Evenhuis, M. Macka, P.R. Haddad, Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis 25, 4032–4057 (2004)

    Article  Google Scholar 

  27. P. Kuban, P.C. Hauser, Capacitively coupled contactless conductivity detection for microseparation techniques—recent developments. Electrophoresis 32, 30–42 (2011)

    Article  Google Scholar 

  28. B.P. Cahill, R. Land, T. Nacke, M. Min, D. Beckmann, Contactless sensing of the conductivity of aqueous droplets in segmented flow. Sens. Actuators B 159, 286–293 (2011)

    Article  Google Scholar 

  29. B.P. Cahill, R. Land, J. Metze, Simulation of the measurement of the impedance of aqueous droplets in segmented flow. Chem. Eng. Trans. 24, 535–540 (2011)

    Google Scholar 

  30. B.P. Cahill, Optimization of an impedance sensor for droplet-based microfluidic systems. Proc. SPIE 8066, 80660F–80668 (2011)

    Article  ADS  Google Scholar 

  31. T. Lederer, S. Clara, B. Jakoby, W. Hilber, Integration of impedance spectroscopy sensors in a digital microfluidic platform. Microsyst. Technol. 18, 1163–1180 (2012)

    Article  Google Scholar 

  32. T. Lederer, B.P. Stehrer, S. Bauer, B. Jakoby, W. Hilber, Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sens. Actuators A 172, 161–168 (2011)

    Article  Google Scholar 

  33. S. Sadeghi, H. Ding, G.J. Shah, S. Chen, P.Y. Keng, C.J.C. Kim, R.M. van Dam, On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal. Chem. 84, 1915–1923 (2012)

    Article  Google Scholar 

  34. M.C. Hofmann, M. Funke, J. Büchs, W. Mokwa, U. Schnakenberg, Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes. Sens. Actuators B 147, 93–99 (2010)

    Article  Google Scholar 

  35. H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8, 50–57 (1999)

    Article  Google Scholar 

  36. U. Pliquett, D. Frense, M. Schönfeldt, C. Frätzer, Y. Zhang, B. Cahill, M. Metzen, A. Barthel, T. Nacke, D. Beckmann, Testing miniaturized electrodes for impedance measurements within the \(\beta \)-dispersion—a practical approach. J. Electr. Bioimpedance 1, 41–55 (2010)

    Google Scholar 

  37. S.C.C. Shih, I. Barbulovic-Nad, X. Yang, R. Fobel, A.R. Wheeler, Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectron. 42, 314–320 (2013)

    Article  Google Scholar 

  38. A. Barthel, D. Beckmann, J. Friedrich, I. Mock, T. Nacke, P. Peyerl, IMPSPEC - Ein hard- und softwarekonzept für die (bio)-impedanzspektroskopie. Chem. Ing Tech. 77, 1948 (2005)

    Article  Google Scholar 

  39. T. Nacke, A. Barthel, J. Friedrich, M. Helbig, J. Sachs, M. Schäfer, P. Peyerl, U. Pliquett, A new hard and software concept for impedance spectroscopy analysers for broadband process measurements, in 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, vol. 17, pp. 194–197. doi:10.1007/978-3-540-73841-1_52 (2007)

    Google Scholar 

  40. R. Land, B.P. Cahill, T. Parve, P. Annus, M. Min, Improvements in design of spectra of multisine and binary excitation signals for multi-frequency bioimpedance measurement, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4038–4041. doi:10.1109/IEMBS.2011.6091003 (2011)

    Google Scholar 

  41. C. Song, P. Wang, A radio frequency device for measurement of minute dielectric property changes in microfluidic channels. Appl. Phys. Lett. 94, 023901 (2009)

    Article  ADS  Google Scholar 

  42. T. Nacke, A. Barthel, M. Meister, B.P. Cahill, Application of high frequency sensors for contactless monitoring in disposable bioreactors. Chem. Ing. Tech. 85, 179–185 (2013)

    Article  Google Scholar 

  43. T. Nacke, A. Barthel, B.P. Cahill, R. Klukas, M. Meister, C. Pflieger, D. Beckmann, Contactless wide-band nearfield microwave sensing techniques in microfluidic applications, in 14th International Meeting on Chemical Sensors IMCS 2012, pp. 411–414. doi:10.5162/IMCS2012/4.5.4. (2012)

    Google Scholar 

  44. J. Wessel, J.C. Scheytt, K. Schmalz, B. Cahill, G. Gastrock, Microwave biosensor for characterization of compartments in teflon capillaries, in 42nd European Microwave Conference EuMC 2012, pp. 534–537. (2012)

    Google Scholar 

  45. J. Wessel, K. Schmalz, B. Cahill, G. Gastrock, C. Meliani, Contactless characterization of yeast cell cultivation at 7 GHz and 240 GHz, in 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), (Austin, TX, USA, 2013), pp. 147–149. doi:10.1109/SiRF.2013.6489461

    Google Scholar 

  46. A. Stogryn, G. Desargant, The dielectric properties of brine in sea ice at microwave frequencies. IEEE Trans. Antennas Propag. 33, 523–532 (1985)

    Article  ADS  Google Scholar 

  47. M. Venkatesh, G. Raghavan, An overview of dielectric properties measuring techniques. Can. Biosyst. Eng. 47, 15–30 (2005)

    Google Scholar 

  48. K.K. Joshi, I. Allika, C. Wadke, Nondestructive microstrip resonator technique for the measurement of moisture / permittivity in crude oil, in Proceedings of the XXVIIIth URSI General Assembly, (New Delhi, India, 2005), pp. 324–330

    Google Scholar 

  49. R. Knöchel, R. Jahns, W. Taute, C. Döscher, A resonator-based moisture meter for high moisture levels, in Proceedings of the First European Conference on Moisture Measurement, (Weimar, Germany, 2010), pp. 53–62

    Google Scholar 

Download references

Acknowledgments

Thomas Nacke would like to thank the Thuringian Ministry of Education, Science and Culture for financial support. B. Cahill would like to thank the European Union for financially supporting the Marie Curie ERG project EWETDYNAM under reference number PERG05-GA-2009-247784.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Cahill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cahill, B.P., Schemberg, J., Nacke, T., Gastrock, G. (2014). Electrical Sensing in Segmented Flow Microfluidics. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics