Skip to main content

Droplet Microfluidics in Two-Dimensional Channels

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter presents methods for two-dimensional manipulation of droplets in microchannels. These manipulations allow a wide range of operations to be performed, such as arraying drops in two-dimensions, selecting particular drops from an array, or inducing chemical reactions on demand. The use of the two-dimensional format, by removing the influence of the channel side walls, reduces the interactions between droplets and thus simplifies droplet operations, while making them more robust. Finally, the chapter presents further developments on droplet microfluidics without a mean flow of the outer phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We will always consider to be constant in this discussion

References

  1. M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  ADS  Google Scholar 

  2. S.K. Cho, H. Moon, C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12(1), 70–80 (2003)

    Article  Google Scholar 

  3. A.A. Darhuber, J.P. Valentino, J.M. Davis, S.M. Troian, S. Wagner, Microfluidic actuation by modulation of surface stresses. Appl. Phys. Lett. 82(4), 657–659 (2003)

    Article  ADS  Google Scholar 

  4. K.T. Kotz, K.A. Noble, G.W. Faris, Optical microfluidics. Appl. Phys. Lett. 85(13), 2658–2660 (2004)

    Google Scholar 

  5. A. Wixforth, Acoustically driven planar microfluidics. Superlattices Microstruct. 33(5–6), 389–396 (2003)

    Article  ADS  Google Scholar 

  6. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163–4166 (2001)

    Article  ADS  Google Scholar 

  7. S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using ’flow-focusing’ in microchannels. Appl. Phys. Lett. 82(3), 364–366 (2003)

    Article  ADS  Google Scholar 

  8. R. Dreyfus, P. Tabeling, H. Willaime, Ordered and discordered patterns in two phase flows in microchannels. Phys. Rev. Lett. 90, 144505 (2003)

    Article  ADS  Google Scholar 

  9. K. Ahn, C. Kerbage, T. Hynt, R.M. Westervelt, D.R. Link, D.A. Weitz, Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 024104 (2006)

    Article  ADS  Google Scholar 

  10. C.N. Baroud, M.R. de Saint Vincent, J-P. Delville, An optical toolbox for total control of droplet microfluidics. Lab Chip 7, 1029–1033 (2007)

    Google Scholar 

  11. K. Ahn, J. Agresti, H. Chong, M. Marquez, D.A. Weitz, Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett. 88, 264105 (2006)

    Article  ADS  Google Scholar 

  12. H. Song, J.D. Tice, R.F. Ismagilov, A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 42(7), 768–772 (2003)

    Google Scholar 

  13. H. Song, D.L. Chen, R.F. Ismagilov, Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006)

    Google Scholar 

  14. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  15. A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49(34), 5846–5868 (2010)

    Article  Google Scholar 

  16. C.N. Baroud, F. Gallaire, R. Dangla, Dynamics of microfluidic droplets. Lab Chip 10(16), 2032–2045 (2010)

    Article  Google Scholar 

  17. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics. Reports on progress in physics 75(1), 016601 (2012)

    Article  ADS  Google Scholar 

  18. I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)

    Article  Google Scholar 

  19. N.R. Beer, B.J. Hindson, E.K. Wheeler, B. Sara, K.A. Rose, I.M. Kennedy, and B.W. Colston. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal. Chem. 79(22), 8471–8475 (2007) (Quantalife people)

    Google Scholar 

  20. J. Shim, G. Cristobal, D.R. Link, T. Thorsen, Y. Jia, K. Piattelli, S. Fraden, Control and measurement of the phase behavior of aqueous solutions using microfluidics. J. Am. Chem. Soc. 129(28), 8825–8835 (2007)

    Article  Google Scholar 

  21. W. Shi, J. Qin, N. Ye, B. Lin, Droplet-based microfluidic system for individual Caenorhab- ditis elegans assay. Lab Chip 8(9), 1432–1435 (2008)

    Article  Google Scholar 

  22. H. Boukellal, Š. Selimović, Y. Jia, G. Cristobal, and S. Fraden. Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 9(2), 331–338 (2008)

    Google Scholar 

  23. C.H.J. Schmitz, A.C. Rowat, S. Koester, D.A. Weitz, Dropspots: a picoliter array in a microfluidic device. Lab Chip 9(1), 44–49 (2009)

    Article  Google Scholar 

  24. A. Huebner, D. Bratton, G. Whyte, M. Yang, A.J. deMello, C. Abell, F. Hollfelder, Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9(5), 692–698 (2009)

    Article  Google Scholar 

  25. M. Sun, S.S. Bithi, S.A. Vanapalli, Microfluidic static droplet arrays with tuneable gradients in material composition. Lab Chip 11(23), 3949–3952 (2011)

    Article  Google Scholar 

  26. W.H. Tan, S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Nat. Acad. Sci. 104(4), 1146–1151 (2007)

    Article  ADS  Google Scholar 

  27. D. Di Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab Chip 6(11), 1445–1449 (2006)

    Article  Google Scholar 

  28. P. Abbyad, R. Dangla, A. Alexandrou, C.N. Baroud, Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab Chip 11, 813–821 (2011)

    Article  Google Scholar 

  29. A. Huebner, C. Abell, W.T.S. Huck, C.N. Baroud, F. Hollfelder, Monitoring a reaction at submillisecond resolution in picoliter volumes. Anal. Chem. 83, 1462–1468 (2011)

    Article  Google Scholar 

  30. E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, C.N. Baroud, Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. Lab Chip 11(24), 4228–4234 (2011)

    Article  Google Scholar 

  31. Fr. Hauksbee. An account of an experiment touching the direction of a drop of oil of oranges, between two glass planes, towards any side of them that is neareste press’d together. Philos. Trans. R. Soc. 27, 395–396 (1710)

    Google Scholar 

  32. E. Lorenceau, D. Quéré, Drops on a conical wire. J. Fluid Mech. 510, 29–45 (2004)

    Article  ADS  MATH  Google Scholar 

  33. M. Reyssat, L. Courbin, E. Reyssat, H.A. Stone et al., Imbibition in geometries with axial variations. J. Fluid Mech. 615, 335 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. T. Metz, N. Paust, C. Müller, R. Zengerle, and P. Koltay. Passive water removal in fuel cells by capillary droplet actuation. Sens. Actuators, A Phys. 143(1), 49–57 (2008)

    Google Scholar 

  35. T. Metz, N. Paust, R. Zengerle, P. Koltay, Capillary driven movement of gas bubbles in tapered structures. Microfluid. Nanofluid. 9, 341–355 (2010)

    Article  Google Scholar 

  36. R. Dangla, S. Lee, C.N. Baroud, Trapping microfluidic drops in wells of surface energy. Phys. Rev. Lett. 107(12), 124501 (2011)

    Article  ADS  Google Scholar 

  37. S. Lee, C.N. Baroud, Drop shape in a hele-shaw cell with a localized indentation (In preparation, 2013)

    Google Scholar 

  38. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17, R705 (2005)

    Article  ADS  Google Scholar 

  39. M.L. Cordero, D.R. Burnham, C.N. Baroud, D. McGloin, Thermocapillary manipula- tion of droplets using holographic beam shaping: microfluidic pin ball. Appl. Phys. Lett. 93(3), 034107 (2008)

    Article  ADS  Google Scholar 

  40. H. Bruus, Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12(9), 1578–1586 (2012)

    Article  Google Scholar 

  41. J. Xu, B. Ahn, H. Lee, L. Xu, K. Lee, R. Panchapakesan, K.W. Oh, Droplet-based microfluidic device for multiple-droplet clustering. Lab Chip 12(4), 725–730 (2012)

    Article  Google Scholar 

  42. M. Robert de Saint Vincent, R. Wunenburger, J.P. Delville, Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92(15), 154105 (2008)

    Google Scholar 

  43. K.T. Kotz, Y. Gu, G.W. Faris, Optically addressed droplet-based protein assay. J. Am. Chem. Soc. 127, 5736–5737 (2005)

    Article  Google Scholar 

  44. E. Verneuil, M.L. Cordero, F. Gallaire, C.N. Baroud, Laser-induced force on a microfluidic drop: Origin and magnitude. Langmuir 25(9), 5127–5134 (2009)

    Article  Google Scholar 

  45. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz, Monidisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005)

    Article  ADS  Google Scholar 

  46. G.F. Christopher, S.L. Anna, Microfluidic methods for generating continuous droplet streams. J. Phys. D: Appl. Phys. 40, R319–R336 (2007)

    Article  ADS  Google Scholar 

  47. J.C. Galas, D. Bartolo, V. Studer, Active connectors for microfluidic drops on demand. New J. Phys. 11, 075027 (2009)

    Article  ADS  Google Scholar 

  48. J. Guzowski, P.M. Korczyk, S. Jakiela, P. Garstecki, Automated high-throughput gener- ation of droplets. Lab Chip 11(21), 3603–3608 (2011)

    Google Scholar 

  49. H. Gu, C.U. Murade, M.H.G. Duits, F. Mugele, A microfluidic platform for on-demand formation and merging of microdroplets using electric control. Biomicrofluidics 5(1), 011101 (2011)

    Google Scholar 

  50. S. Sugiura, M. Nakajima, S. Iwamoto, M. Seki, Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18), 5562–5566 (2001)

    Article  Google Scholar 

  51. I. Kobayashi, S. Mukataka, M. Nakajima, Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Langmuir 21(17), 7629–7632 (2005)

    Article  Google Scholar 

  52. C. Priest, S. Herminghaus, R. Seemann, Generation of monodisperse gel emulsions in a microfluidic device. Appl. Phys. Lett. 88, 024106 (2006)

    Article  ADS  Google Scholar 

  53. F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary, H. Willaime, P. Tabeling, B. Cabane, P. Poncet, Monodisperse colloids synthesized with nanofluidic technology. Langmuir, 26, 10–1441 (2010)

    Google Scholar 

  54. R. Dangla, E. Fradet, Y. Lopez, C.N. Baroud, The physical mechanisms of step emulsification. J. Phys. D: Appl. Phys. 46, 114003 (2013)

    Article  ADS  Google Scholar 

  55. E. Fradet, P. Abbyad, M. Vos, C.N. Baroud, On demand pairing of microfluidic droplets for chemical kinetics ( Submitted 2013)

    Google Scholar 

  56. R. Dangla, S.C. Kayi, C.N. Baroud, Droplet microfluidics driven by gradients of confinement. Proc. Nat. Acad. Sci. 110(3), 853–858 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The results described here summarize the work of several gifted PhD students and postdocs in my lab. I am particularly grateful to Rémi Dangla, Etienne Fradet, Sungyon Lee, and Paul Abbyad for the bulk of the results shown here. Caroline Frot provided important technical support. Figures 2.22.32.4, and 2.5 were provided by Rémi Dangla. Figure 2.8 was provided by Gabriel Amselem. Figures 2.92.102.112.12, and 2.13 were provided by Etienne Fradet. Some of the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 278248 “Multicell”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles N. Baroud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baroud, C.N. (2014). Droplet Microfluidics in Two-Dimensional Channels. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics