Skip to main content

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Abstract

It is decidable if a set of numbers, whose representation in a base b is a regular language, is ultimately periodic. This was established by Honkala in 1986.

We give here a structural description of minimal automata that accept an ultimately periodic set of numbers. We then show that it can be verified in linear time if a given minimal automaton meets this description.

This yields a O(n log(n)) procedure for deciding whether a general deterministic automaton accepts an ultimately periodic set of numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)

    Google Scholar 

  2. Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, J., Zeitoun, M.: Description and analysis of a bottom-up DFA minimization algorithm. Inf. Process. Lett. 107(2), 52–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Soc. Math. 1, 191–238 (1994); Corrigendum. Bull. Belg. Soc. Math. 1, 577 (1994)

    Google Scholar 

  5. Cobham, A.: On the base-dependance of the sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)

    Google Scholar 

  7. Durand, F., Rigo, M.: On Cobham’s theorem, HAL-00605375. Pin, J.-E. (ed.) To Appear in AutoMathA Handbook. E.M.S. (2011)

    Google Scholar 

  8. Frougny, C.: Representation of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 34–107. Cambridge Univ. Press (2010)

    Google Scholar 

  10. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacif. J. Math. 16, 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Honkala, J.: A decision method for the recognizability of sets defined by number systems. RAIRO Theor. Informatics and Appl. 20, 395–403 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 108–162. Cambridge Univ. Press (2010)

    Google Scholar 

  13. Leroux, J.: A polynomial time Presburger criterion and synthesis for number decision diagrams. In: Logic in Computer Science 2005 (LICS 2005), pp. 147–156. IEEE Comp. Soc. Press (2005); New version at arXiv:cs/0612037v1

    Google Scholar 

  14. Marsault, V., Sakarovitch, J.: Ultimate periodicity of b-recognisable sets: a quasilinear procedure, http://arxiv.org/abs/1301.2691

  15. Muchnik, A.: The definable criterion for definability in Presburger arithmetic and its applications. Theoret. Computer Sci. 290, 1433–1444 (1991)

    Article  MathSciNet  Google Scholar 

  16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009); Corrected English translation of Éléments de théorie des automates. Vuibert (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marsault, V., Sakarovitch, J. (2013). Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics