Skip to main content

Parameterized Approximability of Maximizing the Spread of Influence in Networks

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

Abstract

In this paper, we consider the problem of maximizing the spread of influence through a social network. Here, we are given a graph G = (V,E), a positive integer k and a threshold value thr(v) attached to each vertex v ∈ V. The objective is then to find a subset of k vertices to “activate” such that the number of activated vertices at the end of a propagation process is maximum. A vertex v gets activated if at least thr(v) of its neighbors are. We show that this problem is strongly inapproximable in fpt-time with respect to (w.r.t.) parameter k even for very restrictive thresholds. For unanimity thresholds, we prove that the problem is inapproximable in polynomial time and the decision version is W[1]-hard w.r.t. parameter k. On the positive side, it becomes r(n)-approximable in fpt-time w.r.t. parameter k for any strictly increasing function r. Moreover, we give an fpt-time algorithm to solve the decision version for bounded degree graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aazami, A., Stilp, K.: Approximation algorithms and hardness for domination with propagation. SIAM J. Discrete Math. 23(3), 1382–1399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k-subgraph. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)

    Article  Google Scholar 

  5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27-29), 2714–2724 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Dinur, I., Safra, S.: The importance of being biased. In: Proc. of STOC, pp. 33–42. ACM (2002)

    Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  11. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proc. of KDD, pp. 137–146. ACM (2003)

    Google Scholar 

  13. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  14. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Network Anal. Mining (2012) (online available)

    Google Scholar 

  15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  16. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282, 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F. (2013). Parameterized Approximability of Maximizing the Spread of Influence in Networks. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics