Skip to main content

Advances in the Parallelisation of Software for Quantum Chemistry Applications

  • Conference paper
  • First Online:
Advanced Computing

Abstract

Density functional theory (DFT) provides some of the most important methods used in computational theory today. They allow one to determine the electronic structure of finite chemical systems, be they molecules or clusters, using a quantum-mechanical model, and exposes, thus, the great majority of the systems’ properties relevant to chemical applications. However, the numerical treatment of large chemical systems proves to be expensive, requiring elaborate parallelisation strategies.This paper presents two recent developments which aim at improving the parallel scalability of the quantum chemistry code ParaGauss. First, we introduce a new Fortran interface to parallel matrix algebra and its library implementation. This interface specifies a set of distributed data objects, combined with a set of linear algebra operators. Thus, complicated algebraic expressions can be expressed efficiently in pseudo-mathematical notation, while the numerical computations are carried out by back-end parallel routines. This technique is evaluated on relativistic transformations, as implemented in ParaGauss.The second development addresses the solution of the generalized matrix eigenvalue problem—an inherent step in electronic structure calculations. In the case the symmetry of a molecule is exploited, pertinent matrices expose a block-diagonal structure which makes the efficient use of existing parallel eigenvalue solvers difficult. We discuss a technique that uses a malleable parallel task scheduling (MPTS) algorithm for scheduling instances of parallel ScaLAPACK-routines on the available processor resources. This technique significantly improves the parallel performance of this numerical step, reducing the corresponding execution time to below 1 s in most applications considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK’s User’s Guide. SIAM, Philadelphia (1992)

    Google Scholar 

  2. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B., Lederer, H., Willems, P.R.: Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37, 783–794 (2011)

    Article  Google Scholar 

  3. Belling, T., Grauschopf, T., Krüger, S., Mayer, M., Nörtemann, F., Staufer, M., Zenger, C., Rösch, N.: In: Bungartz, H.J., Durst, F., Zenger, C. (eds.) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol. 8, p. 439. Springer, Heidelberg (1999)

    Google Scholar 

  4. Belling, T., Grauschopf, T., Krüger, S., Nörtemann, F., Staufer, M., Mayer, M., Nasluzov, V.A., Birkenheuer, U., Hu, A., Matveev, A.V., Shor, A.V., Fuchs-Rohr, M.S.K., Neyman, K.M., Ganyushin, D.I., Kerdcharoen, T., Woiterski, A., Gordienko, A.B., Majumder, S., Rösch, N.: PARAGAUSS, version 3.1. Technische Universität München (2006)

    Google Scholar 

  5. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  6. Blazewicz, J., Kovalyov, M.Y., Machowiak, M., Trystram, D., Weglarz, J.: Scheduling malleable tasks on parallel processors to minimize the makespan. Ann. Oper. Res. 129, 65–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling: From Theory to Applications. Springer, Heidelberg (2007)

    Google Scholar 

  8. Buenker, R.J., Chandra, P., Hess, B.A.: Matrix representation of the relativistic kinetic energy operator: two-component variational procedure for the treatment of many-electron atoms and molecules. Chem. Phys. 84, 1–9 (1984)

    Article  Google Scholar 

  9. Decker, T., Lücking, T., Monien, B.: A 5/4-approximation algorithm for scheduling identical malleable tasks. Theor. Comput. Sci. 361(2), 226–240 (2006)

    Article  MATH  Google Scholar 

  10. Douglas, M., Kroll, N.M.: Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. (NY) 82, 89 (1974)

    Google Scholar 

  11. Enhanced data type facilities. ISO/IEC TR 15581, 2nd edn. (1999). ftp://ftp.nag.co.uk/sc22wg5/N1351-N1400/N1379.pdf

  12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  13. Gottschling, P., Wise, D.S., Adams, M.D.: Representation-transparent matrix algorithms with scalable performance. In: Proceedings of the 21st Annual International Conference on Supercomputing, ICS ’07, Seattle, pp. 116–125. ACM, New York (2007)

    Google Scholar 

  14. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)

    Article  Google Scholar 

  15. Graham, R.L.: Bounds on multiprocessing timing anomalities. SIAM J. Appl. Math. 17, 263–269 (1969)

    Google Scholar 

  16. Häberlen, O.D., Chung, S.C., Stener, M., Rösch, N.: From clusters to the bulk. A relativistic electronic structure investigation on a series of gold clusters Au n , \(n = 6,\ldots 147\). J. Chem. Phys. 106, 5189–5201 (1997)

    Google Scholar 

  17. Hein, J.: Improved parallel performance of SIESTA for the HPCx Phase2 system. Technical report, The University of Edinburgh (2004)

    Google Scholar 

  18. Jansen, K.: Scheduling malleable parallel tasks: an asymptotic fully polynomial time approximation scheme. Algorithmica 39, 59–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling, B.S.: The Boost C++ Libraries. XML Press (2011). http://books.google.de/books?id=xMH0XwAACAAJ

  20. Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In: SODA ’94, Arlington, pp. 167–176 (1994)

    Google Scholar 

  21. Mounié, G., Rapine, C., Trystram, D.: Efficient approximation algorithms for scheduling malleable tasks. In: SPAA ’99, Saint Malo, pp. 23–32 (1999)

    Google Scholar 

  22. Mounié, G., Rapine, C., Trystram, D.: A 3/2-approximation algorithm for scheduling independent monotonic malleable tasks. SIAM J. Comput. 37(2), 401–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. National supercomputer HLRB-II. http://www.lrz-muenchen.de/. Retrieved on 10 Aug 2012

  24. Roderus, M., Berariu, A., Bungartz, H.J., Krüger, S., Matveev, A.V., Rösch, N.: Scheduling parallel eigenvalue computations in a quantum chemistry code. In: Euro-Par (2)’10, Ischia, pp. 113–124 (2010)

    Google Scholar 

  25. Roderus, M., Matveev, A.V., Bungartz, H.J.: A high-level Fortran interface to parallel matrix algebra. In: CCSEIT-2012, International Conference Proceeding Series (ICPS), Coimbatore. ACM (2012, Accepted)

    Google Scholar 

  26. Rösch, N., Matveev, A., Nasluzov, V.A., Neyman, K.M., Moskaleva, L., Krüger, S.: Quantum chemistry with the Douglas–Kroll–Hess approach to relativistic density functional theory: efficient methods for molecules and materials. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory – Applications. Theoretical and Computational Chemistry Series, vol. 14, pp. 656–722. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  27. Sanderson, C.: Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments. Technical report, NICTA (2010)

    Google Scholar 

  28. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stewart, G.W.: Matran: a Fortran 95 matrix wrapper. Technical report, UMIACS (2003)

    Google Scholar 

  30. Turek, J., Wolf, J., Yu, P.: Approximate algorithms for scheduling parallelizable tasks. In: SPAA’92, San Diego, pp. 323–332 (1992)

    Google Scholar 

  31. van de Geijn, R.A.: Using PLAPACK: Parallel Linear Algebra Package. MIT, Cambridge (1997)

    Google Scholar 

  32. Ward, R.C., Bai, Y., Pratt, J.: Performance of parallel eigensolvers on electronic structure calculations II. Technical report, The University of Tennessee (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Roderus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roderus, M., Matveev, A., Bungartz, HJ., Rösch, N. (2013). Advances in the Parallelisation of Software for Quantum Chemistry Applications. In: Bader, M., Bungartz, HJ., Weinzierl, T. (eds) Advanced Computing. Lecture Notes in Computational Science and Engineering, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38762-3_6

Download citation

Publish with us

Policies and ethics