Skip to main content

Numerical Simulation of Transport in Porous Media: Some Problems from Micro to Macro Scale

  • Conference paper
  • First Online:
Advanced Computing

Abstract

This paper deals with simulation of flow and transport in porous media such as transport of groundwater contaminants. We first discuss how macro scale equations are derived and which terms have to be closed by models. The transport of tracers is strongly influenced by pore scale velocity structure and large scale inhomogeneities in the permeability field. The velocity structure on the pore scale is investigated by direct numerical simulations of the 3D velocity field in a random sphere pack. The velocity probability density functions are strongly skewed, including some negative velocities. The large probability for very small velocities might be the reason for non-Fickian dispersion in the initial phase of contaminant transport. We present a method to determine large scale distributions of the permeability field from point-wise velocity measurements. The adjoint-based optimisation algorithm delivers fully satisfying agreement between input and estimated permeability fields. Finally numerical methods for convection dominated tracer transports are investigated from a theoretical point of view. It is shown that high order Finite Element Methods can reduce or even eliminate non-physical oscillations in the solution without introducing additional numerical diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New York (1972)

    MATH  Google Scholar 

  2. Becker, R., Vexler, B.: A posteriori error estimation for finite element discretization of parameter identification problems. Numer. Math. 96(3), 435–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges da Silva, E., Souza, D., Ulson de Souza, A., Guelli U. de Souza, S.: Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions in porous media. Braz. J. Chem. Eng. 24, 47–60 (2007)

    Google Scholar 

  5. Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braack, M., Schieweck, F.: Equal-order finite elements with local projection stabilization for the darcy-brinkman equations. Comp. Methods Appl. Mech. Eng. 200(9–12), 1126–1136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills – numerical and experimental study over a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

  8. Cai, Q., Kollmannsberger, S., Sala, E., Huerta, A., Rank, E.: On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements. Comput. Math. Appl. (2013, submitted)

    Google Scholar 

  9. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155–173 (2004)

    Article  Google Scholar 

  10. Deurer, M., Vogeler, I., Clothier, B., Scotter, D.: Magnetic resonance imaging of hydrodynamic dispersion in a saturated porous medium. Transp. Porous Media 54, 145–166 (2004)

    Article  Google Scholar 

  11. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester/Hoboken (2003)

    Book  Google Scholar 

  12. Durlofsky, L.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)

    Article  MathSciNet  Google Scholar 

  13. Ernst, O.: Residual-minimizing Krylov subspace methods for stabilized discretization of convection-diffusion equations. SIAM J. Matrix Anal. Appl. 21, 1079–1101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassanizadeh, S.: On the transient non-Fickian dispersion theory. Transp. Porous Media 23, 107–124 (1996)

    Article  Google Scholar 

  15. Himmelstoß, T.: Stabilisierung und Parameteridentifikation für die Darcy-Gleichungen. Master’s thesis, Technische Universität München (2011)

    Google Scholar 

  16. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003)

    Article  MATH  Google Scholar 

  17. Hokpunna, A., Manhart, M.: Compact fourth-order finite volume method for numerical solutions of Navier-Stokes equations on staggered grids. J. Comput. Phys. 229, 7545–7570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jenny, P., Tchelepi, H., Meyer, D.: Uncertainty assessment of transport in porous media based on a probability density function method. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam (2006)

    Google Scholar 

  19. Juanes, R.: A variational multiscale finite element method for multiphase flow in porous media. Finite Elem. Anal. Des. 41(7–8), 763–777 (2005)

    Article  MathSciNet  Google Scholar 

  20. Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64, 203–226 (2003)

    Article  Google Scholar 

  21. Liakopoulos, A.: Darcy’s coefficient of permeability as symmetric tensor of second rank. Int. Assoc. Sci. Hydrol. Bull. 10(3), 41–48 (1965)

    Article  Google Scholar 

  22. Mahnken, R., Steinmann, P.: A finite element algorithm for parameter identification of material models for fluid-saturated porous media. Int. J. Numer. Anal. Methods Geomech. 25(5), 415–434 (2001)

    Article  MATH  Google Scholar 

  23. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004)

    Article  MATH  Google Scholar 

  24. Meyer, D., Jenny, P.: Stochastic mixing model for PDF simulations of turbulent reacting flow. In: Advances in Turbulence X, pp. 681–684. CIMNE, Barcelona (2004)

    Google Scholar 

  25. Meyer, D., Tchelepi, H., Jenny, P.: An eulerian joint velocity-concentration PDF method for solute dispersion in highly heterogeneous porous media. Geophys. Res. Abstr. 12, 5700 (2010)

    Google Scholar 

  26. Nowak, W., Schwede, R., Cirpca, O., Neuweiler, I.: Probability density functions of hydraulic head and velocity in three-dimensional heterogeneous porous media. Water Resour. Res. 44 (2008)

    Google Scholar 

  27. Peller, N.: Numerische simulation turbulenter Strömungen mit immersed boundaries. Ph.D. thesis, Technische Universität München (2010)

    Google Scholar 

  28. Peller, N., Le Duc, A., Tremblay, F., Manhart, M.: High-order stable interpolations for immersed boundary methods. Int. J. Numer. Methods Fluids 52, 1175–1193 (2006)

    Article  MATH  Google Scholar 

  29. Rank, E., Katz, C., Werner, H.: On the importance of the discrete maximum principle in transient analysis using finite element methods. Int. J. Numer. Methods Eng. 19, 1771–1782 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schulz, V., Wittum, G.: Multigrid optimization methods for stationary parameter identification problems in groundwater flow. In: Multigrid Methods V. Volume 3 of the LCSE series, pp. 276–288. Springer, Berlin (1998)

    Google Scholar 

  31. Suciu, N., Radu, F., Prechtel, A., Knabner, P.: A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. Comput. Appl. Math. 246, 27–37 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  33. Szabó, B., Düster, A., Rank, E.: The p-version of the finite element method. Encycl. Comput. Mech. 1, 119–139 (2004)

    Google Scholar 

  34. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society, Providence (2010)

    Google Scholar 

  35. Vexler, B.: Adaptive finite element methods for parameter identification problems. Ph.D. thesis, Universität Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (2004)

    Google Scholar 

  36. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  Google Scholar 

  37. Williamson, J.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(48) (1980)

    Google Scholar 

  38. Yang, C., Samper, J.: A subgrid-scale stabilized finite element method for multicomponent reactive transport through porous media. Transp. Porous Media 78(1), 101–126 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanji Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, Q. et al. (2013). Numerical Simulation of Transport in Porous Media: Some Problems from Micro to Macro Scale. In: Bader, M., Bungartz, HJ., Weinzierl, T. (eds) Advanced Computing. Lecture Notes in Computational Science and Engineering, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38762-3_3

Download citation

Publish with us

Policies and ethics