Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7924))

Abstract

In this paper, we first summarize the attacks on the existing arbitrated quantum signature (AQS) schemes and then present a valid forgery attack. Also, we discuss the effectiveness of these attacks and analyze the reasons for these schemes suffered attacks. Moreover, we propose an AQS scheme which can resist all existent attacks. The proposed AQS scheme can preserve all merits in the previous AQS schemes such as it can sign the known and unknown quantum messages. To achieve higher security of AQS, we also construct a strong quantum one-time pads encryption which is applied to improve the AQS schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error. In: Proceedings of the twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 176–188. ACM (1997)

    Google Scholar 

  2. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp. 449–458. IEEE (2002)

    Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)

    Google Scholar 

  5. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Physical Review A 79(3), 032341 (2009)

    Article  MathSciNet  Google Scholar 

  6. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Physical Review Letters 99(14), 140501 (2007)

    Article  MathSciNet  Google Scholar 

  7. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Physical Review A 67(4), 042317 (2003)

    Google Scholar 

  8. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters 81(26), 5932–5935 (1998)

    Google Scholar 

  9. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Physical Review Letters 87(16), 167902 (2001)

    Article  Google Scholar 

  10. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A 351(1), 23–25 (2006)

    Article  MATH  Google Scholar 

  11. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. ArXiv:quant-ph/1106.5318 (2011)

    Google Scholar 

  12. Curty, M., Lütkenhaus, N.: Comment on“Arbitrated quantum-signature scheme”. Physical Review A 77(4), 046301 (2008)

    Google Scholar 

  13. Curty, M., Santos, D.J., Pérez, E., García-Fernández, P.: Qubit authentication. Physical Review A 66(2), 022301 (2002)

    Google Scholar 

  14. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against trojan horse attack. ArXiv:quant-ph/0508168 (2005)

    Google Scholar 

  15. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 414, 413 (2001)

    Article  Google Scholar 

  16. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Physical Review A 84(2), 022344 (2011)

    Google Scholar 

  18. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74(1), 145–195 (2002)

    Article  Google Scholar 

  19. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Physical Review A 85(5), 056301 (2012)

    Google Scholar 

  20. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics 41(3), 599–627 (2007)

    Google Scholar 

  21. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Physical Review Letters 75(24), 4337–4341 (1995)

    Article  Google Scholar 

  22. Lau, F., Rubin, S.H., Smith, M.H., Trajkovic, L.: Distributed denial of service attacks. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2275–2280. IEEE (2000)

    Google Scholar 

  23. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Physical Review A 79(5), 054307 (2009)

    Google Scholar 

  24. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    Article  Google Scholar 

  25. Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM (JACM) 48(3), 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  26. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 56–65. IEEE (1996)

    Google Scholar 

  27. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters 85(2), 441–444 (2000)

    Article  Google Scholar 

  28. Sun, Z., Du, R., Long, D.: Improving the security of arbitrated quantum signature protocols. ArXiv:quant-ph/1107.2459 (2011)

    Google Scholar 

  29. Zeng, G.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ”. Physical Review A 78(1), 016301 (2008)

    Google Scholar 

  30. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Physical Review A 65(4), 042312 (2002)

    Google Scholar 

  31. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Physical Review A 82(4), 042325 (2010)

    Google Scholar 

  32. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Physical Review A 79(5), 052312 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, X., Qiu, D. (2013). Arbitrated Quantum Signature Schemes: Attacks and Security. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38756-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38755-5

  • Online ISBN: 978-3-642-38756-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics