Skip to main content

Fundamental Concepts of Finite Element Method (FEM)

  • Chapter
  • First Online:
FEFLOW
  • 5301 Accesses

Abstract

In this chapter the basic principles of FEM are systematically developed and reviewed for prototypical advection-dispersion equations (ADE’s). The different spatial and temporal discretization techniques are addressed. The important approximate solutions for the divergence and convective forms of ADE are carefully developed. Emphasis is given on adaptive solution strategies. Implicit and explicit time integration methods are reviewed and compared. It clearly shows the superiority of implicit strategies for the present problem classes, in particular automatic error-controlled predictor-corrector schemes are favorited. Upwind methods are thoroughly discussed and examined in comparison to the standard Galerkin-based FEM (GFEM). Stability and error analyses for the favorite schemes are presented in some detail. Techniques for solving the resulting matrix equations are discussed. Of important interest is the solution of the nonlinear equations by using Picard and Newton iteration techniques, which are embedded in adaptive time stepping strategies for solving transient problems. A particular focus is given on derived quantities, i.e., the evaluation of fluxes and balance quantities. It is shown that the FEM is locally conservative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A continuous space-time approximation can be expressed in the form

    $$\displaystyle{\phi (\boldsymbol{x},t) \approx \hat{\phi } (\boldsymbol{x},t) =\sum _{j}N_{j}(\boldsymbol{x},t)\,\phi _{j}}$$

    where the basis functions \(\boldsymbol{x},t\) have to be prescribed both in space \(\boldsymbol{x}\) and time t. It requires a finite element in space-time and increases the computational dimension, e.g., a transient 3D problem needs a 4D trial space.

  2. 2.

    Let \(\mathcal{L}\) be a differential operator of a PDE defined in Ω and let ϕ and ψ be two functions in the field of definition of \(\mathcal{L}\). The operator \(\mathcal{L}\) is said to be self-adjoint if identical to its own adjoint operator \({\mathcal{L}}^{{\ast}}\), i.e., \(\mathcal{L} = {\mathcal{L}}^{{\ast}}\), which must result from the integral statement

    $$\displaystyle{\int _{\varOmega }\mathcal{L}(\phi )\psi d\varOmega =\int _{\varOmega }\phi {\mathcal{L}}^{{\ast}}(\psi )d\varOmega + \mbox{ boundary integral terms}}$$
  3. 3.

    For instance, the non-self-adjoint ADE in form of (8.5) can be transformed to a self-adjoint problem by introducing the new operator [129, 132, 218, 427]

    $$\displaystyle{\bar{\mathcal{L}} =\varphi \, \mathcal{L}}$$

    where the function \(\varphi =\varphi (\boldsymbol{x})\) is chosen by

    $$\displaystyle{\varphi =\exp (\beta ),\quad \beta = -\frac{\boldsymbol{q} \cdot \boldsymbol{ x}} {\Vert \boldsymbol{D}\Vert } }$$

    assuming a dispersion tensor \(\boldsymbol{D}\) with D ij = 0 for ij. It yields the following variational functional

    $$\displaystyle{\mathcal{I} =\int _{\varOmega }{\Bigl [\tfrac{1} {2}\nabla \phi \cdot (\boldsymbol{D} \cdot \nabla \phi ) +{\Bigl (\acute{ \mathcal{R}}\frac{\partial \phi } {\partial t} + \frac{\vartheta +Q} {2} \phi - H - Q_{\phi w}\Bigr )}\phi \Bigr ]}\,\exp (\beta )d\varOmega -\int _{\varGamma }(\boldsymbol{D} \cdot \nabla \phi ) \cdot \boldsymbol{ n}\phi \,\exp (\beta )d\varGamma }$$

    to be extremized. However, its application is clearly restricted because values of exp(β) can become very large (small) for advection-dominated processes and the variational functional terms overflow (underflow) in practical computations [129, 485].

  4. 4.

    We know from (2.26) when two vectors in space are at right angles, their dot product is zero and the vectors are orthogonal. While vectors have only a limited number of entries, any real-valued function \(f(\boldsymbol{x})\) is characterized by infinite number of points within its domain of definition Ω. It is obvious to consider two functions \(f(\boldsymbol{x})\) and \(g(\boldsymbol{x})\) to be orthogonal, if the product \(f(\boldsymbol{x})g(\boldsymbol{x})\) ‘summed’ over all \(\boldsymbol{x}\) within the domain Ω results zero. Since the amount of \(\boldsymbol{x}\) covers infinite real numbers, the product \(f(\boldsymbol{x})g(\boldsymbol{x})\) has to be integrated. Hence, the analogy for the dot product is the inner product given by

    $$\displaystyle{(f,g) =\int _{\varOmega }f(\boldsymbol{x})g(\boldsymbol{x})d\varOmega }$$

    Then, the two functions are orthogonal if (f, g) = 0. It is evident that functions if defined in the L 2(Ω) space, cf. (8.25), e.g.,

    $$\displaystyle{\Vert f\Vert ={\Bigl (\int _{\varOmega }f{(\boldsymbol{x})}^{2}{d\varOmega \Bigr )}}^{\tfrac{1} {2} } < \infty,\quad \Vert g\Vert ={\Bigl (\int _{\varOmega }g{(\boldsymbol{x})}^{2}{d\varOmega \Bigr )}}^{\tfrac{1} {2} } < \infty }$$

    can be treated if they were vectors, where the Schwarz’s inequality holds

    $$\displaystyle{(f,g) \leq \Vert f\Vert \Vert g\Vert }$$

    or

    $$\displaystyle\begin{array}{rcl} \vert {(f,g)\vert }^{2} \leq (f,f)(g,g)& & {}\\ \end{array}$$

    The L 2(Ω)−norm corresponds to a measure of the size of a function, which is in direct analogy with the vector norm (2.11). The Schwarz’s inequality ensures that the expression

    $$\displaystyle{\cos \theta = \frac{(f,g)} {\Vert f\Vert \Vert g\Vert } }$$

    yields well-defined angles θ in space similar to the scalar product of vectors (2.24).

  5. 5.

    The weak statements (8.94) and (8.95) imply that the weighting functions w i belong to the H 0 1 functional space (8.23). On the other hand, the basis functions N i belong to the H 1 functional space, i.e., they do not vanish on Dirichlet boundaries: \(N_{i}\neq 0\;\mbox{ on}\;\varGamma _{D}\). Nevertheless, we may use WS in form of (8.94) and (8.95) with \(w_{i} = N_{i} \in {H}^{1}(\varOmega ),\; 1 \leq i \leq N_{\mathrm{P}}\), where we enforce at first a zero flux \((\phi \boldsymbol{q} -\boldsymbol{ D} \cdot \nabla \phi ) \cdot \boldsymbol{ n} \approx 0\) or \(-(\boldsymbol{D} \cdot \nabla \phi ) \cdot \boldsymbol{ n} \approx 0\) on Γ D in the original weak statements (8.47) and (8.54), respectively, and incorporate the actual Dirichlet (essential) BC’s afterwards via a direct manipulation of the resulting discrete matrix system as further discussed in Sect. 8.16.

  6. 6.

    We can alternatively write the matrices and vectors in using directly the global shape function (8.85) with the global node numbers i, j:

    $$\displaystyle\begin{array}{rcl} \begin{array}{rcl} O_{\mathit{ij}} & = & \left \{\begin{array}{ll} \sum _{e}\int _{{\varOmega }^{e}}{\mathcal{R}}^{e}\,N_{ i}N_{j}{d\varOmega }^{e}&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\;\,\;\,\mbox{ divergence form} \\ \sum _{e}\int _{{\varOmega }^{e}}\acute{{\mathcal{R}}}^{e}\,N_{ i}N_{j}{d\varOmega }^{e}&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\;\,\;\,\mbox{ convective form} \end{array} \right. \\ A_{\mathit{ij}} & = & \left \{\begin{array}{ll} -\sum _{e}\int _{{\varOmega }^{e}}\boldsymbol{{q}}^{e} \cdot \nabla N_{ i}N_{j}{d\varOmega }^{e}&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\,\mbox{ divergence form} \\ \sum _{e}\int _{{\varOmega }^{e}}N_{i}\boldsymbol{{q}}^{e} \cdot \nabla N_{ j}{d\varOmega }^{e} &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\,\mbox{ convective form} \end{array} \right. \\ C_{\mathit{ij}} & = & \sum _{e}\int _{{\varOmega }^{e}}\nabla N_{i} \cdot (\boldsymbol{{D}}^{e} \cdot \nabla N_{ j}){d\varOmega }^{e} \\ R_{\mathit{ij}} & = & \left \{\begin{array}{ll} \sum _{e}\int _{{\varOmega }^{e}}{(\vartheta }^{e} + \tfrac{\partial {\mathcal{R}}^{e}} {\partial t} )N_{i}N_{j}{d\varOmega }^{e} &\qquad \qquad \qquad \quad \;\;\;\;\,\mbox{ divergence form} \\ \sum _{e}\int _{{\varOmega }^{e}}{(\vartheta }^{e} + {Q}^{e})N_{ i}N_{j}{d\varOmega }^{e} -\delta _{\mathit{ ij}}Q_{w}(t)\vert _{i}&\qquad \qquad \qquad \qquad \;\mbox{ convective form} \end{array} \right. \\ B_{\mathit{ij}} & = & \left \{\begin{array}{ll} \sum _{e}{\Bigl (\int {_{\varGamma _{C}^{e}}\varPhi }^{{\dag }^{e}}N_{ i}N_{j}{d\varGamma }^{e} +\int _{\varGamma _{ N_{O}}^{e}}N_{i}(\boldsymbol{q}N_{j} -\boldsymbol{ D} \cdot \nabla N_{j}) \cdot \boldsymbol{ n}{d\varGamma }^{e}\Bigr )}&\mbox{ divergence form} \\ \sum _{e}{\Bigl (\int {_{\varGamma _{C}^{e}}\varPhi }^{e}N_{ i}N_{j}{d\varGamma }^{e} -\int _{\varGamma _{ N_{O}}^{e}}N_{i}(\boldsymbol{D} \cdot \nabla N_{j}) \cdot \boldsymbol{ n}{d\varGamma }^{e}\Bigr )} &\mbox{ convective form} \end{array} \right. \\ H_{i}& = & \left \{\begin{array}{ll} \sum _{e}{\Bigl (\int _{\varGamma _{C}^{e}}N{_{i}\varPhi }^{{\dag }^{e}}\phi _{ C}^{e}{d\varGamma }^{e} -\int _{\varGamma _{ N}^{e}\setminus \varGamma _{N_{ O}}^{e}}N_{i}q_{N}^{{\dag }^{e}}{d\varGamma }^{e}\Bigr )}&\qquad \qquad \quad \;\;\;\,\;\,\mbox{ divergence form} \\ \sum _{e}{\Bigl (\int _{\varGamma _{C}^{e}}N{_{i}\varPhi }^{e}\phi _{ C}^{e}{d\varGamma }^{e} -\int _{\varGamma _{ N}^{e}\setminus \varGamma _{N_{ O}}^{e}}N_{i}q_{N}^{e}{d\varGamma }^{e}\Bigr )} &\qquad \qquad \quad \;\;\;\,\;\,\mbox{ convective form} \end{array} \right. \\ Q_{i}& = & \sum _{e}\int _{{\varOmega }^{e}}N_{i}{H}^{e}{d\varOmega }^{e} -\phi _{w}Q_{w}(t)\vert _{ i} \end{array} & & {}\\ \end{array}$$
  7. 7.

    Note that:

    $$\displaystyle\begin{array}{rcl} \begin{array}{rcl} \boldsymbol{{q}}^{e} \cdot \nabla N_{I}^{e}N_{J}^{e}& = & {\bigl (N_{I}^{e}\boldsymbol{{q}}^{e} \cdot \nabla N_{J}^{{e}\bigr )}}^{T} \\ \boldsymbol{{q}}^{e} \cdot \nabla N_{i}N_{j}& = & {\bigl (N_{i}\boldsymbol{{q}}^{e} \cdot \nabla N{_{j}\bigr )}}^{T} \end{array} & & {}\\ \end{array}$$
  8. 8.

    The local coordinates \(\boldsymbol{\eta }\) commonly range \(-1 \leq \boldsymbol{\eta }\leq +1\), except in triangular or tetrahedral (and partly pentahedral and pyramidal) geometries, where the lower limit is zero: \(0 \leq \boldsymbol{\eta }\leq +1\), see furthermore (8.128).

  9. 9.

    The 2nd-order derivatives are obtained by repeated application of 1st-order approximations:

    $$\displaystyle{\ddot{\boldsymbol{\phi }}_{n+1} = \frac{\dot{\boldsymbol{\phi }}_{n+1} -\dot{\boldsymbol{\phi }}_{n}} {\varDelta t_{n}} + \mathcal{O}(\varDelta t_{n}),\quad \ddot{\boldsymbol{\phi }}_{n} = \frac{\dot{\boldsymbol{\phi }}_{n+1} -\dot{\boldsymbol{\phi }}_{n}} {\varDelta t_{n}} -\mathcal{O}(\varDelta t_{n})}$$

    so that

    $$\displaystyle{\ddot{\boldsymbol{\phi }}_{n+1} =\ddot{\boldsymbol{\phi }} _{n} + \mathcal{O}(\varDelta t_{n})}$$
  10. 10.

    Truncated Taylor series expansions for \(\boldsymbol{\phi }_{n-1}\) and \(\boldsymbol{\phi }_{n+1}\) about t n give:

    $$\displaystyle{\boldsymbol{\phi }_{n-1} =\boldsymbol{\phi } _{n} -\varDelta t_{n-1}\dot{\boldsymbol{\phi }}_{n} + \frac{\varDelta t_{n-1}^{2}} {2} \ddot{\boldsymbol{\phi }}_{n},\quad \boldsymbol{\phi }_{n+1} =\boldsymbol{\phi } _{n} +\varDelta t_{n}\dot{\boldsymbol{\phi }}_{n} + \frac{\varDelta t_{n}^{2}} {2} \ddot{\boldsymbol{\phi }}_{n}}$$

    Using the first expression to write \(\dot{\boldsymbol{\phi }}_{n} = \frac{\boldsymbol{\phi }_{n}-\boldsymbol{\phi }_{n-1}} {\varDelta t_{n-1}} + \frac{\varDelta t_{n-1}} {2} \ddot{\boldsymbol{\phi }}_{n}\) and inserting into the second formula with \(\frac{\varDelta t_{n}} {2} \ddot{\boldsymbol{\phi }}_{n} = \frac{\boldsymbol{\phi }_{n+1}-\boldsymbol{\phi }_{n}} {\varDelta t_{n}} -\dot{\boldsymbol{\phi }}_{n}\), we obtain

    $$\displaystyle{\dot{\boldsymbol{\phi }}_{n} = \frac{\boldsymbol{\phi }_{n} -\boldsymbol{\phi }_{n-1}} {\varDelta t_{n-1}} + \frac{\varDelta t_{n-1}} {\varDelta t_{n}} {\biggl (\frac{\boldsymbol{\phi }_{n+1} -\boldsymbol{\phi }_{n}} {\varDelta t_{n}} -\dot{\boldsymbol{\phi }}_{n}\biggr )}}$$

    After some manipulations we finally find

    $$\displaystyle{\dot{\boldsymbol{\phi }}_{n} = \frac{\varDelta t_{n-1}} {\varDelta t_{n} +\varDelta t_{n-1}}{\biggl (\frac{\boldsymbol{\phi }_{n+1} -\boldsymbol{\phi }_{n}} {\varDelta t_{n}} \biggr )} + \frac{\varDelta t_{n}} {\varDelta t_{n} +\varDelta t_{n-1}}{\biggl (\frac{\boldsymbol{\phi }_{n} -\boldsymbol{\phi }_{n-1}} {\varDelta t_{n-1}} \biggr )}}$$
  11. 11.

    Since \(O_{\mathit{ii}}^{e} = \frac{\acute{\mathcal{R}}\varDelta x} {3} \bigl |_{\mathrm{CM}}\) for a consistent mass (CM) matrix, the critical time step becomes even smaller:

    $$\displaystyle{\varDelta t_{n} <\varDelta t_{n}^{\mathrm{crit}} \approx \frac{\acute{\mathcal{R}}\varDelta {x}^{2}} {3D} }$$
  12. 12.

    The analytical (exact) solution of a 1D ADE is [71], p. 388, [540], cf. also Sect. 12.5.1

    $$\displaystyle{\phi (x,t) =\phi _{0} + \tfrac{1} {2}(\phi _{D} -\phi _{0}){\biggl [\mathrm{erfc}{\biggl (\frac{x - {q}^{{\ast}}t} {2\sqrt{{D}^{{\ast} } t}}\biggr )} +\exp {\Bigl ( \frac{x{q}^{{\ast}}} {{D}^{{\ast}}}\Bigr )}\;\mathrm{erfc}{\biggl (\frac{x + {q}^{{\ast}}t} {2\sqrt{{D}^{{\ast} } t}}\biggr )}\biggr ]}}$$

    valid for the IC: ϕ(x, 0) =ϕ 0, and BC’s: ϕ(0, t) =ϕ D and \(\frac{\partial \phi } {\partial x}(\infty,t) = 0\), where

    $$\displaystyle{\mathrm{erfc}(a) = \tfrac{2} {\sqrt{\pi }}\int _{a}^{\infty }\exp ({-\xi }^{2})d\xi }$$

    is the complementary error function [71], ϕ 0 = 0 is the used initial value and ϕ D = 1 is the used Dirichlet-type BC at x = 0. Note that for evaluating the analytical exp(. )erfc(. ) expression the more suitable exf(. , . ) function is applied which will be further discussed in Sect. 12.5.1.

  13. 13.

    For the ADE convective form the continuous weighting functions (8.218) and the discontinuous weighting functions (8.220) lead to the same result. However, for the ADE divergence form only the continuous weighting functions (8.218) are applicable, where the element advection matrix \(\boldsymbol{{A}}^{e}\) (8.104) becomes

    $$\displaystyle\begin{array}{rcl} \boldsymbol{{A}}^{e} = \tfrac{{q}^{e}} {2} \left (\begin{array}{cc} 1+\alpha & \;\;1-\alpha \\ - 1-\alpha &\;\; - 1+\alpha \end{array} \right )& & {}\\ \end{array}$$
  14. 14.

    A similar expression can be obtained for the ADE divergence form.

  15. 15.

    The ADE divergence form (8.3) contains a divergence expression of the advection term in form of \(\nabla \cdot (\boldsymbol{q}\phi )\). For the split advective part (8.267) the advective operator \({\mathcal{L}}^{a}\) would be

    $$\displaystyle{{\mathcal{L}}^{a} =\boldsymbol{ q} \cdot \nabla + (\nabla \cdot \boldsymbol{ q})}$$

    Then, the LS weak statement of the advective part is

    $$\displaystyle{\mathrm{LSWS} =\int _{\varOmega }{\bigl [\acute{\mathcal{R}}N_{i} +\theta \varDelta t_{n}\nabla \cdot (\boldsymbol{q}N_{i})\bigr ]}{\bigl [\acute{\mathcal{R}}(\dot{\phi }{-\dot{\phi }}^{d}) + \nabla \cdot (\boldsymbol{q}\phi )\bigr ]}d\varOmega = 0}$$

    which leads to a matrix system equivalent to (8.284), but having different element matrices

    $$\displaystyle{\begin{array}{rcl} \boldsymbol{{A}}^{e}& = & \int _{{\varOmega }^{e}}N_{I}^{e}[(\boldsymbol{{q}}^{e} \cdot \nabla N_{ J}^{e}) + (\nabla \cdot \boldsymbol{ {q}}^{e})N_{ J}^{e}]{d\varOmega }^{e} \\ \boldsymbol{{V }}^{e}& = & \int _{{\varOmega }^{e}}[(\boldsymbol{{q}}^{e} \cdot \nabla N_{ I}^{e}) + (\nabla \cdot \boldsymbol{ {q}}^{e})N_{ I}^{e}]N_{ J}^{e}{d\varOmega }^{e} \\ \boldsymbol{{T}}^{e}& = & \int _{{\varOmega }^{e}}\varDelta t_{n} \tfrac{1} {\acute{\mathcal{R}}}[\nabla \cdot (\boldsymbol{{q}}^{e}N_{ I}^{e})][\nabla \cdot (\boldsymbol{{q}}^{e}N_{ J}^{e})]{d\varOmega }^{e} \end{array} }$$

    While the symmetry of the matrix system is still maintained since \(\boldsymbol{{A}}^{e} ={ \boldsymbol{{V }}^{e}}^{T}\), the divergence expressions \((\nabla \cdot \boldsymbol{ {q}}^{e})\) appearing in \(\boldsymbol{{A}}^{e}\), \(\boldsymbol{{V }}^{e}\) and \(\boldsymbol{{T}}^{e}\) can cause difficulties if the flow is not selenoidal (i.e., not divergence-free: \(\nabla \cdot \boldsymbol{ q}\neq 0\)) at the presence of storage and sources/sinks. This makes the LS technique rather inappropriate for the ADE divergence form.

  16. 16.

    If the Jacobian \(\boldsymbol{J}{(\boldsymbol{\phi }}^{\tau }) = \partial \boldsymbol{R}{(\boldsymbol{\phi }}^{\tau })/{\partial \boldsymbol{\phi }}^{\tau }\) is not analytically available or too difficult for an analytical evaluation, it can be constructed numerically via a secant approximation by using a possibly very small increment δ in a form such as

    $$\displaystyle{\boldsymbol{J}{(\boldsymbol{\phi }}^{\tau }) \approx \frac{\boldsymbol{R}{(\boldsymbol{\phi }}^{\tau }+\delta ) -\boldsymbol{ R}{(\boldsymbol{\phi }}^{\tau })} {\delta } }$$

    The increment δ should not be chosen too small to avoid roundoff errors. On the other hand, a too large δ leads to a poor approximation of the Jacobian. A reasonable choice is the square root of the unit roundoff being about \(\epsilon _{R} = 1{0}^{-12}\) in double precision arithmetic, accordingly \(\delta = \sqrt{\epsilon _{R}} = 1{0}^{-6}\). The extra effort of the numerical evaluation consists of additional N EQ evaluation of residual \(\boldsymbol{R}\).

  17. 17.

    Superconvergence of the derivatives can be shown for the Gauss points, at least for quadrilateral elements [590]. On the other hand, the location of the superconvergent points for triangular elements is not fully known. Zienkiewicz and Zhu [594] propose to use optimal points, for instance the central points for linear triangles.

References

  1. Argyris, J., Vaz, L., Willam, K.: Higher order methods for transient diffusion analysis. Comput. Methods Appl. Mech. Eng. 12(2), 243–278 (1977)

    Google Scholar 

  2. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  3. Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201–204, 91–111 (2012)

    Google Scholar 

  4. Babuška, I., Miller, A.: The post-processing approach in the finite element method – part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20(6), 1085–1109 (1984)

    Google Scholar 

  5. Bakhvalov, N.: On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Comput. Math. Math. Phys. 6(5), 101–135 (1966)

    Google Scholar 

  6. Bause, M.: Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity. Adv. Water Resour. 31(2), 370–382 (2008)

    Google Scholar 

  7. Bause, M., Knabner, P.: Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv. Water Resour. 27(6), 561–581 (2004)

    Google Scholar 

  8. Beauwens, R.: Modfied incomplete factorization strategies. In: Axelsson, O., Kolotilina, L. (eds.) Precondioned Conjugate Gradient Methods. Lecture Notes in Mathematics, vol. 1457, pp. 1–16. Springer, Berlin/Heidelberg/New York (1990)

    Google Scholar 

  9. Behie, A., Vinsome, P.: Block iterative methods for fully implicit reservoir simulation. SPE J. 22(5), 658–668 (1982)

    Google Scholar 

  10. Belytschko, T., Lu, Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Google Scholar 

  11. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)

    Google Scholar 

  12. Bergamaschi, L., Putti, M.: Mixed finite elements and Newton-like linearization for the solution of Richard’s equation. Int. J. Numer. Methods Eng. 45(8), 1025–1046 (1999)

    Google Scholar 

  13. Berger, R., Howington, S.: Discrete fluxes and mass balance in finite elements. J. Hydraul. Eng. 128(1), 87–92 (2002)

    Google Scholar 

  14. Bixler, N.: An improved time integrator for finite element analysis. Commun. Appl. Numer. Methods 5(2), 69–78 (1989)

    Google Scholar 

  15. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Google Scholar 

  16. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19(1–4), 23–56 (1986)

    Google Scholar 

  17. Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Methods – Theory and Applications. Springer, New York (1983)

    Google Scholar 

  18. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Google Scholar 

  19. Brooks, A., Hughes, T.: Streamlin upwind/Petrov-Galerkin formulations for convective dominated flow with particular emphasis on the incompressible Navier-Sokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Google Scholar 

  20. Carey, G.: Derivative calculation from finite element solutions. Comput. Methods. Appl. Mech. Eng. 35(1), 1–14 (1982)

    Google Scholar 

  21. Carslaw, H., Jaeger, J.: Conduction of Heat in Solids. Oxford Science Publications, Oxford (1946, reprinted 2011)

    Google Scholar 

  22. Chavent, G., Roberts, J.: A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resour. 14(6), 329–348 (1991)

    Google Scholar 

  23. Cheng, R.: Modeling of hydraulic systems by finite element methods. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 11, pp. 207–283. Academic, New York (1978)

    Google Scholar 

  24. Christie, I., Mitchell, A.: Upwinding of high order Galerkin methods in conduction-convection problems. Int. J. Numer. Methods Eng. 12(11), 1764–1771 (1978)

    Google Scholar 

  25. Christie, I., Griffiths, D., Mitchell, A., Zienkiewicz, O.: Finite element methods for second order differential equations with significant first derivatives. Int. J. Numer. Methods Eng. 10(6), 1389–1396 (1976)

    Google Scholar 

  26. Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  27. Ciarlet, P., Lions, J.: Handbook of Numerical Analysis. Volume II. Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  28. Clough, R.: The finite element method in plane stress analysis. In: ASCE Structural Division. Proceedings of the 2nd Conference on Electronic Computation, Pittsburgh, pp. 345–378 (1960)

    Google Scholar 

  29. Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal. 45(4), 1742–1776 (2007)

    Google Scholar 

  30. Codina, R.: A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Eng. 110(3–4), 325–342 (1993)

    Google Scholar 

  31. Codina, R.: Stability analysis of the forward Euler scheme for the convection-diffusion equation using SUPG formulation in space. Int. J. Numer. Methods Eng. 36(9), 1445–1464 (1993)

    Google Scholar 

  32. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Google Scholar 

  33. Codina, R.: On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 188(1–3), 61–82 (2000)

    Google Scholar 

  34. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)

    Google Scholar 

  35. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32–74 (1928)

    Google Scholar 

  36. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th ACM National Conference, New York, pp. 157–172 (1969)

    Google Scholar 

  37. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)

    Google Scholar 

  38. Dennis, J., Moré, J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    Google Scholar 

  39. D’Haese, C., Putti, M., Paniconi, C., Verhoest, N.: Assessment of adaptive and heuristic time stepping for variably saturated flow. Int. J. Numer. Methods Fluids 53(7), 1173–1193 (2007)

    Google Scholar 

  40. Diersch, H.J.: Finite-element-Galerkin-Modell zur Simulation zweidimensionaler konvektiver und dispersiver Stofftransportprozesse im Boden (finite element Galerkin model for simulating convective and dispersive mass transport processes in soils). Acta Hydrophysica 26(1), 5–44 (1981)

    Google Scholar 

  41. Diersch, H.J.: Primitive variables finite element solutions of free convection flows in porous media. Z. Angew. Math. Mech. 61(7), 325–337 (1981)

    Google Scholar 

  42. Diersch, H.J.: On finite element upwinding and its numerical performance in simulating coupled convective transport processes. Z. Angew. Math. Mech. 63(10), 479–488 (1983)

    Google Scholar 

  43. Diersch, H.J.: Modellierung und numerische Simulation geohydrodynamischer Ttransportprozesse (modeling and numerical simulation of geohydrodynamic transport processes). Ph.D. thesis, Habilitation, Academy of Sciences, Berlin, Germany (1985)

    Google Scholar 

  44. Diersch, H.J.: The Petrov-Galerkin least square method (PGLS). In: FEFLOW White Papers, vol. I, Chapter 13, pp. 227–270. DHI-WASY, Berlin (2001)

  45. Diersch, H.J., Perrochet, P.: On the primary variable switching technique for simulating unsaturated-saturated flows. Adv. Water Resour. 23(3), 271–301 (1999)

    Google Scholar 

  46. Dogrul, E., Kadir, T.: Flow computation and mass balance in Galerkin finite-element groundwater models. J. Hydraul. Eng. 132(11), 1206–1214 (2006)

    Google Scholar 

  47. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester (2003)

    Google Scholar 

  48. Doyle, J.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  49. Durlofsky, L.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994)

    Google Scholar 

  50. Engelman, M., Strang, G., Bathe, K.J.: The application of quasi-Newton methods in fluid mechanics. Int. J. Numer. Methods Eng. 17(5), 707–718 (1981)

    Google Scholar 

  51. Fedorenko, R.: The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4(3), 227–235 (1964)

    Google Scholar 

  52. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1996)

    Google Scholar 

  53. Finlayson, B.: The Method of Weighted Residuals and Variational Principles, with Applications in Fluid Mechanics, Heat and Mass Transfer. Academic, New York (1972)

    Google Scholar 

  54. Fletcher, C.: Computational Techniques for Fluid Dynamics, vols. 1 and 2. Springer, New York (1988)

    Google Scholar 

  55. Forsythe, G., Wasow, W.: Finite-Difference Methods for Partial Differential Equations. Wiley, New York (1960)

    Google Scholar 

  56. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    Google Scholar 

  57. Frind, E.: An isoparametric Hermitian element for the solution of field problems. Int. J. Numer. Methods Eng. 11(6), 945–962 (1977)

    Google Scholar 

  58. Galerkin, B.: Series solution of some problems of elastic equilibrium of rods and plates (in Russian). Vestn. Inzh. Tech. 19, 897–908 (1915)

    Google Scholar 

  59. Garder, A., Jr., Peaceman, D., Pozzi, A., Jr.: Numerical simulation of multi-dimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4(1), 26–36 (1964)

    Google Scholar 

  60. George, A., Liu, J.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs (1981)

    Google Scholar 

  61. Gockenbach, M.: Understanding and Implementing the Finite Element Method. SIAM, Philadelphia (2006)

    Google Scholar 

  62. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    Google Scholar 

  63. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Google Scholar 

  64. Gresho, P., Lee, R.: Don’t suppress the wiggles – they’re telling you something! Comput. Fluids 9(2), 223–253 (1981)

    Google Scholar 

  65. Gresho, P., Sani, R.: Incompressible flow and the finite element method. Wiley, Chichester (1998)

    Google Scholar 

  66. Gresho, P., Lee, R., Sani, R.: Advection-dominated flows, with emphasis on the consequences of mass lumping (Chapter 19). In: Gallagher, R., et al. (eds.) Finite Elements in Fluids, pp. 335–350. Wiley, Chichester (1978)

    Google Scholar 

  67. Gresho, P., Lee, R., Sani, R.: On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. Technical report. Reprint UCRL-83282, Lawrence Livermore Laboratory, University of California (1979)

    Google Scholar 

  68. Gresho, P., Lee, R., Sani, R.: On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In: Taylor, C., Morgan, K. (eds.) Recent Advances in Numerical Methods, vol. 1, pp. 27–79. Pineridge Press, Swansea (1980)

    Google Scholar 

  69. Gresho, P., Lee, R., Sani, R., Maslanik, M., Eaton, B.: The consistent Galerkin FEM for computing derived boundary quantities in thermal and/or fluids problems. Int. J. Numer. Methods Fluids 7(4), 371–394 (1987)

    Google Scholar 

  70. Gustaffson, I.: On first order factorization methods for the solution of problems with mixed boundary conditions and problems with discontinuous matrial coefficients. Technical report, Chalmers University of Technology and Department of Computer Sciences, University of Goeteborg, Goeteborg (1977)

    Google Scholar 

  71. Guymon, G., Scott, V., Herrmann, L.: A general numerical solution of the two-dimensional diffusion-convection equation by the finite element method. Water Resour. Res. 6(6), 1611–1617 (1970)

    Google Scholar 

  72. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  73. Heinrich, J., Zienkiewicz, O.: Quadratic finite element schemes for two-dimensional convective-transport problems. Int. J. Numer. Methods Eng. 11(12), 1831–1844 (1977)

    Google Scholar 

  74. Heinrich, J., Huyakorn, P., Zienkiewicz, O., Mitchell, A.: An ‘upwind’ finite element scheme for two-dimensional convective transport equation. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)

    Google Scholar 

  75. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sect. B 49(6), 409–436 (1952)

    Google Scholar 

  76. Hindmarsh, A., Gresho, P., Griffiths, D.: The stability of explicit Euler time-integration for certain finite difference approximations of the multi-dimensional advection-diffusion equation. Int. J. Numer. Methods Fluids 4(9), 853–897 (1984)

    Google Scholar 

  77. Hinton, E., Campbell, J.: Local and global smoothing of discontinuous finite element functions using a least squares method. Int. J. Numer. Methods Eng. 8(3), 461–480 (1974)

    Google Scholar 

  78. Hood, P.: Frontal solution program for unsymmetric matrices. Int. J. Numer. Methods Eng. 10(2), 379–399 (1976)

    Google Scholar 

  79. Hoopes, J., Harlemann, D.: Wastewater recharge and dispersion in porous media. J. Hydraul. Div. Proc. ASCE 93(HY5), 51–71 (1967)

    Google Scholar 

  80. Hrenikoff, A.: Solution of problems in elasticity by the framework method. Trans. ASME J. Appl. Mech. 8, 169–175 (1941)

    Google Scholar 

  81. Hughes, T.: A simple scheme for developing ‘upwind’ finite elements. Int. J. Numer. Methods Eng. 12(9), 1359–1365 (1978)

    Google Scholar 

  82. Hughes, T., Franca, L.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Google Scholar 

  83. Hughes, T., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusion systems. Comput. Methods Appl. Mech. Eng. 58(3), 329–336 (1986)

    Google Scholar 

  84. Hughes, T., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    Google Scholar 

  85. Hughes, T., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54(3), 341–355 (1986)

    Google Scholar 

  86. Hughes, T., Franca, L., Hulbert, G.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusion equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Google Scholar 

  87. Hughes, T., Engel, G., Mazzei, L., Larson, M.: The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2), 467–488 (2000)

    Google Scholar 

  88. Huyakorn, P.: Solution of steady-state, convective transport equation using an upwind finite element scheme. Appl. Math. Model. 1(4), 187–195 (1977)

    Google Scholar 

  89. Huyakorn, P., Nilkuha, K.: Solution of transient transport equation using an upstream finite-element scheme. Appl. Math. Model. 3(1), 7–17 (1979)

    Google Scholar 

  90. Huyakorn, P., Pinder, G.: Computational Methods in Subsurface Flow. Academic, New York (1983)

    Google Scholar 

  91. Huyakorn, P., Andersen, P., Güven, P., Molz, F.: A curvi-linear finite element model for simulating two-well tracer tests and transport in stratified aquifers. Water Resour. Res. 22(5), 663–678 (1986)

    Google Scholar 

  92. Idelsohn, S., Oñate, E.: Finite volumes and finite elements: two ‘good friends’. Int. J. Numer. Methods Eng. 37(19), 3323–3341 (1994)

    Google Scholar 

  93. Irons, B.: A frontal solution program. Int. J. Numer. Methods Eng. 2(1), 5–32 (1970)

    Google Scholar 

  94. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  95. Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservations laws. Math. Comput. 54(189), 107–129 (1990)

    Google Scholar 

  96. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Google Scholar 

  97. Kantorovich, L.: A direct method of solving problems on the minimum of a double integral. Bull. Acad. Sci. USSR 5, 647–652 (1933)

    Google Scholar 

  98. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Google Scholar 

  99. Karypis, G., Kumar, V.: METIS – a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. v. 4.0. Technical report, Department of Computer Science, University of Minnesota, Minnesota (1998). http://www.cs.umn.edu/~metis

  100. Kelly, D., Nakazawa, S., Zienkiewicz, O., Heinrich, J.: A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. Int. J. Numer. Methods Eng. 15(11), 1705–1711 (1980)

    Google Scholar 

  101. König, C.: Operator split for three dimensional mass transport equation. In: Peters, A., et al. (eds.) Proceedings of the 10th International Conference on Computational Methods in Water Resources, Heidelberg, vol. 1, pp. 309–316. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  102. Labbé, P., Garon, A.: A robust implementation of Zienkiewicz and Zhu’s local patch recovery method. Commun. Numer. Methods Eng. 11(5), 427–434 (1995)

    Google Scholar 

  103. Lambert, J.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)

    Google Scholar 

  104. Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. Sect. B 49(1), 33–53 (1952)

    Google Scholar 

  105. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Google Scholar 

  106. Leismann, H., Frind, E.: A symmetric-matrix time integration scheme for the efficient solution of advection-dispersion problems. Water Resour. Res. 25(6), 1133–1139 (1989)

    Google Scholar 

  107. Leone, J., Gresho, P., Chan, S., Lee, R.: A note on the accuracy of Gauss-Legendre quadrature in the finite element method. Int. J. Numer. Methods Eng. 14(5), 769–773 (1979)

    Google Scholar 

  108. Letniowski, F.: An overview of preconditioned iterative methods for sparse matrix equations. Technical report, CS-89-26, Faculty of Mathematics, University of Waterloo, Waterloo (1989)

    Google Scholar 

  109. Li, W., Chen, Z., Ewing, R., Huan, G., Li, B.: Comparison of the GMRES and ORTHOMIN for the black oil model in porous media. Int. J. Numer. Methods Fluids 48(5), 501–519 (2005)

    Google Scholar 

  110. Liggett, J., Liu, P.F.: The Boundary Integral Equation Method for Porous Media Flow. Unwin Hyman, Boston (1982)

    Google Scholar 

  111. Liu, G.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC, Boca Raton (2003)

    Google Scholar 

  112. Löhner, R., Morgan, K.: An unstructured multigrid method for elliptic problems. Int. J. Numer. Methods Eng. 24(1), 101–115 (1987)

    Google Scholar 

  113. Lynch, D.: Mass conservation in finite element groundwater models. Adv. Water Resour. 7(2), 67–75 (1984)

    Google Scholar 

  114. Mazzia, A., Putti, M.: High order Godunov mixed methods on tetrahedral meshes for density driven flow simulations in porous media. J. Comput. Phys. 208(1), 154–174 (2005)

    Google Scholar 

  115. Mitchell, A., Griffiths, R.: The Finite Difference Method in Partial Differential Equations. Wiley, Chichester (1980)

    Google Scholar 

  116. Mitchell, A., Wait, R.: The Finite Element Method in Partial Differential Equations. Wiley, Chichester (1977)

    Google Scholar 

  117. Mosé, R., Siegel, P., Ackerer, P., Chavent, G.: Application of the mixed hybrid finite element approximation in a groundwater flow model: luxury or necessity? Water Resour. Res. 30(11), 3001–3012 (1994)

    Google Scholar 

  118. Nguyen, H., Reynen, J.: A space-time least-square finite element scheme for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 42(3), 331–342 (1984)

    Google Scholar 

  119. Oshima, M., Hughes, T., Jansen, K.: Consistent finite element calculation of boundary and internal fluxes. Int. J. Comput. Fluid Dyn. 9(3–4), 227–235 (1998)

    Google Scholar 

  120. Pasdunkorale, J., Turner, I.: A second order finite volume technique for simulating transport in anisotropic media. Int. J. Numer. Methods Heat Fluid Flow 13(1), 31–56 (2003)

    Google Scholar 

  121. Pasquetti, R., Rapetti, F.: Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198(1), 349–362 (2004)

    Google Scholar 

  122. Perrochet, P., Bérod, D.: Stability of the standard Crank-Nicolson-Galerkin scheme applied to the diffusion-convection equation: some new insights. Water Resour. Res. 29(9), 3291–3297 (1993)

    Google Scholar 

  123. Piessanetzky, S.: Sparse Matrix Technology. Academic, New York (1984)

    Google Scholar 

  124. Pinder, G., Gray, W.: Finite Element Simulation in Surface and Subsurface Hydrology. Academic, New York (1977)

    Google Scholar 

  125. Prakash, A.: Finite element solutions of the non-self-adjoint convective-dispersion equation. Int. J. Numer. Methods Eng. 11(2), 269–287 (1977)

    Google Scholar 

  126. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  127. Raviart, P., Thomas, J.: A mixed finite element method for the second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  128. Richtmeyer, R., Morton, K.: Difference Methods for Initial Value Problems, 2nd edn. Wiley-Interscience, New York (1963)

    Google Scholar 

  129. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 (1908)

    Google Scholar 

  130. Roache, P.: On artificial viscosity. J. Comput. Phys. 10(2), 169–184 (1972)

    Google Scholar 

  131. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM - Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  132. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Google Scholar 

  133. Salvadori, M., Baron, M.: Numerical Methods in Engineering. Prentice Hall, Englewood Cliffs (1961)

    Google Scholar 

  134. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Google Scholar 

  135. Schiesser, W.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic, San Diego (1991)

    Google Scholar 

  136. Schwarz, H.: Methode der finiten Elemente (Method of Finite Elements). B.G. Teubner, Stuttgart (1991)

    Google Scholar 

  137. Segol, G.: Classic Groundwater Simulations: Proving and Improving Numerical Models. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  138. Siegel, P., Mosé, R., Ackerer, P., Jaffre, J.: Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Int. J. Numer. Methods Fluids 24(6), 595–613 (1997)

    Google Scholar 

  139. Smith, I., Farraday, R., O’Connor, B.: Rayleigh-Ritz and Galerkin finite elements for diffusion-convection problems. Water Resour. Res. 9(3), 593–606 (1973)

    Google Scholar 

  140. Sneddon, I.: Elements in Partial Differential Equations. McGraw-Hill, New York (1957)

    Google Scholar 

  141. Sonnenveld, P.: CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989)

    Google Scholar 

  142. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13(3–4), 419–451 (1983)

    Google Scholar 

  143. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schüller, A. (eds.) Multigrid, pp. 413–532. Elsevier Ltd., Amsterdam (2001)

    Google Scholar 

  144. Taylor, R.: Solution of linear equations by a profile solver. Eng. Comput. 2(4), 344–350 (1985)

    Google Scholar 

  145. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Elsevier Ltd., Amsterdam (2001)

    Google Scholar 

  146. Turner, M., Clough, R., Martin, H., Topp, L.: Stiffness and deflection analysis of complex structures. J. Aerosp. Sci. 23(9), 805–823 (1956)

    Google Scholar 

  147. van der Vorst, H.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Google Scholar 

  148. van Genuchten, M., Alves, W.: Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Technical report technical bulletin number 1661, p. 149, US Department of Agriculture (1982)

    Google Scholar 

  149. van Genuchten, M., Gray, W.: Analysis of some dispersion corrected numerical schemes for solution of the transport equation. Int. J. Numer. Methods Eng. 12(3), 387–404 (1978)

    Google Scholar 

  150. Vinsome, P.: ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations, paper SPE 5739. In: Proceedings of the 4th Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, Los Angeles, pp. 149–159 (1976)

    Google Scholar 

  151. Wait, R., Mitchell, A.: Finite Element Analysis and Applications. Wiley, New York (1985)

    Google Scholar 

  152. Wendland, E.: Numerische Simulation von Strömung und hochadvektivem Stofftransport in geklüftetem, porösem Medium (numerical simulation of flow and advection-dominant mass transport in fractured and porous medium). Ph.D. thesis, Dissertation, Ruhr University Bochum, Bochum, Germany (1996). Report No. 96-6

    Google Scholar 

  153. Wood, W., Lewis, R.: A comparison of time marching schemes for the transient heat conduction equation. Int. J. Numer. Methods Eng. 9(3), 679–689 (1975)

    Google Scholar 

  154. Yeh, G.T.: On the computation of Darcy velocity and mass balance in the finite element modeling of groundwater flow. Water Resour. Res. 17(5), 1529–1534 (1981)

    Google Scholar 

  155. Younes, A., Ackerer, P.: Empirical versus time stepping with embedded error control for density-driven flow in porous media. Water Resour. Res. 46(W08523), 1–8 (2010). doi:http://dx.doi.org/10.1029/2009WR008229

  156. Yu, C.C., Heinrich, J.: Petrov-Galerkin methods for the time-dependent convective transport equation. Int. J. Numer. Methods Eng. 23(5), 883–901 (1986)

    Google Scholar 

  157. Yu, C.C., Heinrich, J.: Petrov-Galerkin methods for multidimensional, time-dependent, convective-diffusion equations. Int. J. Numer. Methods Eng. 24(11), 2201–2215 (1987)

    Google Scholar 

  158. Zgainski, F.X., Coulomb, J.L., Maréchal, Y., Claeyssen, F., Brunotte, X.: A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32(3), 1393–1396 (1996)

    Google Scholar 

  159. Zienkiewicz, O., Cheung, Y.: The Finite Element Method in Structural and Continuums Mechanics. McGraw-Hill, London (1967)

    Google Scholar 

  160. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  161. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 3: Fluid Dynamics, 5th edn. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  162. Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Google Scholar 

  163. Zienkiewicz, O., Heinrich, J., Huyakorn, P., Mitchell, A.: An ‘upwind’ finite element scheme for two-dimensional convective transport equations. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Fundamental Concepts of Finite Element Method (FEM). In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_8

Download citation

Publish with us

Policies and ethics