Skip to main content

Variable-Density Flow, Mass and Heat Transport in Porous Media

  • Chapter
  • First Online:
FEFLOW

Abstract

In Chap. 3 the continuum approach of the porous medium has been described. A fluid (or better a phase) appears there as an effectively continuous medium with a mass density ρ (fluid mass per unit volume of fluid) as a fundamental bulk property. The density of a fluid is often not uniform. In general, the fluid is composed of N miscible chemical species with a partial density ρ k (mass of the constituent k per unit volume of fluid), so that for the mixture \(\rho =\sum _{ k}^{N}\rho _{k}\) (density increases when dissolved mass of constituents increases). Moreover, the density of a fluid can be influenced by the temperature T (density decreases when temperature increases) and by the pressure p (density increases when pressure increases due to compressibility). In a formal manner, the density is to be regarded as a dependent thermodynamic variable for which an equation of state (EOS) ρ =ρ(p, ρ k , T) holds, cf. Sect. 3.8.6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that the impact of p, ρ k and T on ρ does not lead to the same flow effects. Compression effects caused by pressure changes will not feature a new physical characteristic, quite contrary to variable concentration or/and temperature fields which are governed by distinct balance statements subjected to advection and dispersion/conduction. Only the presence of at least one of these quantities is capable of forming complex convective flow phenomena such as flow recirculations, stratified and physically oscillating flow patterns. Flow processes affected exclusively by compression due to pressure changes will not belong to the distinct category of variable-density flow.

  2. 2.

    Alternatively, by using the divergence forms of the governing transport equations for mass and heat, the coupled PDE system reads

    $$\displaystyle{\begin{array}{rcl} s\,S_{o}\frac{\partial h} {\partial t} +\varepsilon \frac{\partial s} {\partial t} + \nabla \cdot \boldsymbol{ q}& = & Q + Q_{\mathrm{EOB}} \\ \boldsymbol{q}& = & - k_{r}\boldsymbol{K}f_{\mu } \cdot \bigl (\nabla h +\chi \boldsymbol{ e}\bigr ) \\ \frac{\partial } {\partial t}(\varepsilon s\mathfrak{R}_{k}C_{k}) + \nabla \cdot (\boldsymbol{q}C_{k}) -\nabla \cdot (\boldsymbol{D}_{k} \cdot \nabla C_{k}) +\varepsilon s\vartheta _{k}\mathfrak{R}_{k}C_{k}& = & \tilde{R}_{k}\quad (k = 1,\ldots,N) \\ \frac{\partial } {\partial t}\bigl [\bigl (\varepsilon s\rho c + {(1-\varepsilon )\rho }^{s}{c}^{s}\bigl )(T - T_{0})\bigr ] + \nabla \cdot (\rho c\boldsymbol{q}(T - T_{0})) -\nabla \cdot (\boldsymbol{\varLambda }\cdot \nabla T) & = & H_{e} \end{array} }$$

    Note that the divergence form of heat transport in terms of the temperature T assumes that the specific heat capacities c and c s are independent of T (cf. discussions in Sect. 3.9.1).

  3. 3.

    Optionally, FEFLOW suppresses all time derivative terms ∂ h∂ t, ∂ s∂ t, ∂ C k ∂ t and ∂ T∂ t for solving steady-state solutions. A specific option exists, named steady flow – transient transport, in which only the derivative terms of the flow equation ∂ h∂ t and ∂ s∂ t are dropped to exclude flow storage effects in the variable-density flow simulation. Note, however, due to the nonlinearity in the flow equation the solution of the flow must be updated at each time t once the concentration C k and/or the temperature T change. As the result, h, s and \(\boldsymbol{q}\) remain time-dependent.

  4. 4.

    The time integration of (11.38) by using the simple θ−method (Sect. 8.13.4) gives

    $$\displaystyle{\begin{array}{l} \Bigl (\frac{\boldsymbol{G}(\boldsymbol{U}_{n+1})} {\varDelta t_{n}} +\boldsymbol{ K}(\boldsymbol{U}_{n+1})\theta \Bigr ) \cdot \boldsymbol{ U}_{n+1} = \\ \Bigl (\frac{\boldsymbol{G}(\boldsymbol{U}_{n+1})} {\varDelta t_{n}} -\boldsymbol{ K}(\boldsymbol{U}_{n+1})(1-\theta )\Bigr ) \cdot \boldsymbol{ U}_{n} +\bigl (\boldsymbol{ Q}(\boldsymbol{U}_{n+1})\theta +\boldsymbol{ Q}(\boldsymbol{U}_{n})(1-\theta )\bigr ) \end{array} }$$

    where \(\theta \in (\tfrac{1} {2}, 1)\) for the Crank-Nicolson and the fully implicit scheme,respectively. A nonlinear matrix system \(\boldsymbol{R}_{n+1} =\boldsymbol{ A}(\boldsymbol{U}_{n+1}) \cdot \boldsymbol{ U}_{n+1} -\boldsymbol{ Z}(\boldsymbol{U}_{n+1},\boldsymbol{U}_{n}) = \mathbf{0}\) results, which must be iteratively solved either via the Picard method (Sect. 8.18.1)

    $$\displaystyle{\boldsymbol{A}(\boldsymbol{U}_{n+1}^{\tau }) \cdot \boldsymbol{ U}_{ n+1}^{\tau +1} =\boldsymbol{ Z}(\boldsymbol{U}_{ n+1}^{\tau },\boldsymbol{U}_{n})\quad \tau = 0, 1, 2,\ldots }$$

    or via the Newton method (Sect. 8.18.2)

    $$\displaystyle{\begin{array}{rcl} \boldsymbol{J}(\boldsymbol{U}_{n+1}^{\tau }) \cdot \varDelta \boldsymbol{ U}_{n+1}^{\tau } & = & -\boldsymbol{ R}_{n+1}(\boldsymbol{U}_{n+1}^{\tau },\boldsymbol{U}_{n})\quad \tau = 0, 1, 2,\ldots \\ \varDelta \boldsymbol{U}_{n+1}^{\tau } & = & \boldsymbol{U}_{n+1}^{\tau +1} -\boldsymbol{ U}_{n+1}^{\tau } \\ \boldsymbol{J}(\boldsymbol{U}_{n+1}^{\tau }) & = & \frac{\partial \boldsymbol{R}_{n+1}(\boldsymbol{U}_{n+1}^{\tau },\boldsymbol{U}_{n})} {\partial \boldsymbol{U}_{n+1}^{\tau }} \end{array} }$$

    until satisfactory convergence is achieved for the iterations τ at each given time stage n + 1. Note that this iterative solution strategy is also applicable to steady-state variable-density problems if setting θ = 1 and Δ t n .

  5. 5.

    For the divergence form of the governing species mass and heat ADE’s it results

    $$\displaystyle{\begin{array}{rcl} \hat{J}_{k,\mathit{ij}} & = & \sum _{e}\int _{{\varOmega }^{e}}\bigl (k_{r}^{e}\boldsymbol{{K}}^{e}f_{\mu }^{e} \cdot \boldsymbol{ e}\bigr ) \cdot \nabla N_{ i}N_{j}\sum _{k}\beta _{c_{k}}^{e}\sum _{ l}(N_{l}C_{k,l}^{p}){d\varOmega }^{e} \\ \hat{J}_{T,\mathit{ij}} & = & -\sum _{e}\int _{{\varOmega }^{e}}\bigl (k_{r}^{e}\boldsymbol{{K}}^{e}f_{\mu }^{e} \cdot \boldsymbol{ e}\bigr ) \cdot \nabla N_{ i}N{_{j}\beta }^{e}({T}^{e})\sum _{ l}(N_{l}T_{l}^{p}){d\varOmega }^{e} \end{array} }$$

References

  1. Abarca, E., Carrera, J., Sánchez-Vila, X., Voss, C.: Quasi-horizontal circulation cells in 3D seawater intrusion. J. Hydrol. 339(3–4), 118–129 (2007)

    Google Scholar 

  2. Ackerer, P., Younes, A., Mosé, R.: Modeling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transp. Porous Media 35(3), 345–373 (1999)

    Google Scholar 

  3. Ackerer, P., Younes, A., Oswald, S., Kinzelbach, W.: On modeling of density driven flow. In: Stauffer, F., et al. (eds.) MODELCARE99 – Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty, Zurich, 1999. IAHS Publication, No. 265, pp. 377–384. IAHS (2000)

    Google Scholar 

  4. Badon-Ghyben, W.: Nota in verband met de voorgenomen putboring nabij Amsterdam (notes on the probable results of well drilling near Amsterdam). In: Tijdschrift van het Kononklijk Instituut van Ingenieurs, vol. 9, pp. 8–22. The Hague (1888)

    Google Scholar 

  5. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  6. Bear, J.: Conceptual and mathematical modeling. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers – Concepts, Methods and Practices, pp. 127–161. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  7. Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Google Scholar 

  8. Beck, J.: Convection in a box of porous material saturated with fluid. Phys. Fluids 15(8), 1377–1383 (1972)

    Google Scholar 

  9. Brandt, A., Fernando, H. (eds.): Double-Diffusive Convection. Geophysical Monograph, vol. 94. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  10. Bués, M., Oltean, C.: Numerical simulations for saltwater intrusion by the mixed hybrid finite element method and discontinuous finite element method. Transp. Porous Media 40(2), 171–200 (2000)

    Google Scholar 

  11. Caltagirone, J., Fabrie, P.: Natural convection in a porous medium at high Rayleigh numbers. Part 1 – Darcy’s model. Eur. J. Mech. B/Fluids 8, 207–227 (1989)

    Google Scholar 

  12. Caltagirone, J., Meyer, G., Mojtabi, A.: Structural thermoconvectives tridimensionnelles dans une couche poreuse horizontale. J. Méc. 20, 219–232 (1981)

    Google Scholar 

  13. Caltagirone, J., Fabrie, P., Combarnous, M.: De la convection naturelle oscillante en milieu poreux au chaos temporel? CR Acad. Sci. Paris 305, Ser.II, 549–553 (1987)

    Google Scholar 

  14. Carey, G., Barth, W., Woods, J., Kirk, B., Anderson, M., Chow, S., Bangerth, W.: Modelling error and constitutive relations in simulation of flow and transport. Int. J. Numer. Methods Fluids 46(12), 1211–1236 (2004)

    Google Scholar 

  15. Cheng, P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1979)

    Google Scholar 

  16. Cheng, A., Quazar, D.: Analytical solutions. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers – Concepts, Methods and Practices, pp. 163–191. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  17. Combarnous, M., Borries, S.: Hydrothermal convection in saturated porous media. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 10, pp. 231–307. Academic, New York (1975)

    Google Scholar 

  18. Combarnous, M., Le Fur, B.: Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. CR Acad. Sci. Paris 269, Ser.B, 1009–1012 (1969)

    Google Scholar 

  19. Cooper, C., Glass, R., Tyler, S.: Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 33(4), 517–526 (1997)

    Google Scholar 

  20. Cooper, C., Glass, R., Tyler, S.: Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 37(9), 2323–2332 (2001)

    Google Scholar 

  21. Croucher, A., O’Sullivan, M.: The Henry problem for saltwater intrusion. Water Resour. Res. 31(7), 1809–1814 (1995)

    Google Scholar 

  22. Davis, S., De Wiest, R.: Hydrogeology, 2nd edn. Wiley, New York (1967)

    Google Scholar 

  23. Debéda, V., Caltagirone, J., Watremez, P.: Local multigrid refinement method for natural convection in fissured porous media. Numer. Heat Transf. Part B 28(4), 455–467 (1995)

    Google Scholar 

  24. De Josselin de Jong, J.: Singularity distributions for the analysis of multiple-fluid flow through porous media. J. Geophys. Res. 65(11), 3739–3758 (1960)

    Google Scholar 

  25. Desai, C., Contractor, D.: Finite element analysis of flow, diffusion, and salt water intrusion in porous media. In: Bathe, K.J., et al. (eds.) Formulation and Computational Algorithms in Finite Element Analysis. MIT, Cambridge (1977)

    Google Scholar 

  26. Diersch, H.J.: Primitive variables finite element solutions of free convection flows in porous media. Z. Angew. Math. Mech. 61(7), 325–337 (1981)

    Google Scholar 

  27. Diersch, H.J.: Finite element modeling of recirculating density driven saltwater intrusion processes in groundwater. Adv. Water Resour. 11(1), 25–43 (1988)

    Google Scholar 

  28. Diersch, H.J.: Consistent velocity approximation in the finite-element simulation of density-dependent mass and heat transport. In: FEFLOW White Papers, vol. I, Chapter 16, pp. 283–314. DHI-WASY, Berlin (2001)

  29. Diersch, H.J., Kolditz, O.: Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv. Water Resour. 21(5), 401–425 (1998)

    Google Scholar 

  30. Diersch, H.J., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25(8–12), 899–944 (2002). doi:http://dx.doi.org/10.1016/S0309-1708(02)00063-5

  31. Diersch, H., Nillert, P.: Saltwater intrusion processes in groundwater: novel computer simulations, field studies and interception techniques. In: Jones, G. (ed.) International Symposium on Groundwater Monitoring and Management, Dresden, 1987. IAHS Publication, No. 173, pp. 319–329. IAHS (1990)

    Google Scholar 

  32. Diersch, H.J., Prochnow, D., Thiele, M.: Finite-element analysis of dispersion-affected saltwater upconing below a pumping well. Appl. Math. Model. 8(5), 305–312 (1984)

    Google Scholar 

  33. Elder, J.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27(1), 29–48 (1967)

    Google Scholar 

  34. Elder, J.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)

    Google Scholar 

  35. Frind, E.: Simulation of long-term transient density-dependent transport in groundwater. Adv. Water Resour. 5(2), 73–88 (1982)

    Google Scholar 

  36. Frolkovič, P.: Consistent velocity approximation for density driven flow and transport. In: Van Keer, R., et al. (eds.) Advanced Computational Methods in Engineering, Part 2, pp. 603–611. Shaker, Maastrich (1998)

    Google Scholar 

  37. Frolkovič, P., De Schepper, H.: Numerical modelling of convection dominated transport with density driven flow in porous media. Adv. Water Resour. 24(1), 63–72 (2001)

    Google Scholar 

  38. Galeati, G., Gambolati, G., Neuman, S.: Coupled and partially coupled Eulerian-Lagrangian model of freshwater-seawater mixing. Water Resour. Res. 28(1), 149–165 (1992)

    Google Scholar 

  39. Gambolati, G., Putti, M., Paniconi, C.: Three-dimensional model of coupled density-dependent flow and miscible salt transport. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, pp. 315–362. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  40. Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, B.: Buoyancy-Induced Flows and Transport. Hemisphere, New York (1988)

    Google Scholar 

  41. Georgiadis, J., Catton, I.: Dispersion in cellular thermal convection in porous layers. Int. J. Heat Mass Transf. 31(5), 1081–1091 (1988)

    Google Scholar 

  42. Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Transf. 39(7), 1363–1378 (1996)

    Google Scholar 

  43. Green, T.: Scales for double-diffusive fingering in porous media. Water Resour. Res. 20(9), 1225–1229 (1984)

    Google Scholar 

  44. Griffiths, R.: Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221–248 (1981)

    Google Scholar 

  45. Häfner, F., Boy, S.: Simulation des dichteabhängigen Stofftransportes im Grundwasser und Verifizierung am Beispiel der Saltpool-Experimente (simulation of density-dependent solute transport in groundwater and verification with saltpool experiments). Grundwasser 10(2), 93–101 (2005)

    Google Scholar 

  46. Häfner, F., Stüben, K.: Simulation and parameter identification of Oswald’s saltpool experiments with the SAMG multigrid-solver in the transport code MODCALIF. In: Kovar, K., et al. (eds.) FEM MODFLOW International Conference on Finite Element Models, MODFLOW, and More: Solving Groundwater Problems, Karlovy Vary, pp. 23–26 (2004)

    Google Scholar 

  47. Hansen, U., Yuen, D.: Formation of layered structures in double-diffusive convection as applied to the geosciences. In: Brandt, A., Fernando, H. (eds.) Double-Diffusive Convection. Geophysical Monograph, vol. 94, pp. 135–149. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  48. Hassanizadeh, S.: On the transient non-Fickian dispersion theory. Transp. Porous Media 23(1), 107–124 (1996)

    Google Scholar 

  49. Hassanizadeh, S., Leijnse, A.: A non-linear theory of high-concentration-gradient dispersion in porous media. Adv. Water Resour. 18(4), 203–215 (1995). doi:http://dx.doi.org/10.1016/0309-1708(95)00012-8

  50. Henry, H.: Effects of dispersion on salt encroachment in coastal aquifers. Technical report Water-Supply Paper 1613-C, pp. 70–84, US Geological Survey (1964)

    Google Scholar 

  51. Henry, D., Touihri, R., Bouhlila, R., Ben Hadid, H.: Multiple flow solutions in buoyancy induced convection in a porous square box. Water Resour. Res. 48(W10538), 1–15 (2012). doi:http://dx.doi.org/10.1029/2012WR011995

  52. Herbert, A., Jackson, C., Lever, D.: Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour. Res. 24(10), 1781–1795 (1988)

    Google Scholar 

  53. Herzberg, A.: Die Wasserversorgung einiger Nordseebäder (the water supply of parts of the North Sea coast in Germany). Z. Gasbeleucht. Wasserversorg. 44, 45, 815–819, 842–844 (1901)

    Google Scholar 

  54. Hickox, C., Gartling, D.: A numerical study of natural convection in a horizontal porous layer subjected to an end-to-end temperature difference. J. Heat Transf. 103(4), 797–802 (1981)

    Google Scholar 

  55. Holst, P., Aziz, K.: Transient three-dimensional natural convection in confined porous media. Int. J. Heat Mass Transf. 15(1), 73–90 (1972)

    Google Scholar 

  56. Holzbecher, E.: Modeling of saltwater upconing. In: Wang, S. (ed.) Proceedings of the 2nd International Conference Hydro-Science and Hydro-Engineering, Beijing, vol. 2, Part A, pp. 858–865 (1995)

    Google Scholar 

  57. Holzbecher, E.: Comment on ‘constant-concentration boundary condition: lessons from the HYDROCOIN variable-density groundwater benchmark problem’ by Konikow, L.F., Sanford, W.E. and Campell, P.J. Water Resour. Res. 34(10), 2775–2778 (1998)

    Google Scholar 

  58. Holzbecher, E.: Modeling Density-Driven Flow in Porous Media. Springer, Berlin (1998)

    Google Scholar 

  59. Horne, R.: Three-dimensional natural convection in a confined porous medium heated from below. J. Fluid Mech. 92(4), 751–766 (1979)

    Google Scholar 

  60. Horne, R., Caltagirone, J.: On the evolution of thermal disturbances during natural convection in a porous medium. J. Fluid Mech. 100(2), 385–395 (1980)

    Google Scholar 

  61. Horne, R., O’Sullivan, M.: Oscillatory convection in a porous medium heated from below. J. Fluid Mech. 66(2), 339–352 (1974)

    Google Scholar 

  62. Horne, R., O’Sullivan, M.: Origin of oscillatory convection in a porous medium heated from below. Phys. Fluids 21(8), 1260–1264 (1978)

    Google Scholar 

  63. Horton, C., Rogers, F.: Convective currents in a porous medium. J. Appl. Phys. 16(6), 367–370 (1945)

    Google Scholar 

  64. Hubbert, M.: The theory of ground-water motion. J. Geol. 48(8), 785–944 (1940)

    Google Scholar 

  65. Hughes, J., Sanford, W.: SUTRA-MS, a version of SUTRA modified to simulate heat and multiple-solute transport. Technical report 2004-1207, p. 141, US Geological Survey, Reston (2004)

    Google Scholar 

  66. Hughes, J., Sanford, W., Vacher, H.: Numerical simulation of double-diffusive finger convection. Water Resour. Res. 41(W01019), 1–16 (2005). doi:http://dx.doi.org/10.1029/2003WR002777

  67. Huyakorn, P., Taylor, C.: Finite element models for coupled groundwater flow and convective dispersion. In: Gray, W., et al. (eds.) 1st International Conference Finite Elements in Water Resources, Princeton, pp. 1.131–1.151. Pentech, London (1976)

    Google Scholar 

  68. Huyakorn, P., Andersen, P.F., Mercer, J., White, H., Jr.: Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour. Res. 23(2), 293–312 (1987)

    Google Scholar 

  69. Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7(3), 169–182 (2003)

    Google Scholar 

  70. Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool benchmark problem – numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25(3), 335–348 (2002)

    Google Scholar 

  71. Johns, R., Rivera, A.: Comment on ‘dispersive transport dynamics in a strongly coupled groundwater-brine flow system’ by Oldenburg, C.M. and Pruess, K. Water Resour. Res. 32(11), 3405–3410 (1996)

    Google Scholar 

  72. Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)

    Google Scholar 

  73. Katto, Y., Masuoka, I.: Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transf. 10(3), 297–309 (1967)

    Google Scholar 

  74. Kimura, S., Schubert, G., Straus, J.: Route to chaos in porous-medium thermal convection. J. Fluid Mech. 166, 23–32 (1986)

    Google Scholar 

  75. Kimura, S., Schubert, G., Straus, J.: Instabilities of steady, periodic and quasi-periodic modes of convection in porous media. ASME J. Heat Transf. 109(2), 350–355 (1987)

    Google Scholar 

  76. Knabner, P., Frolkovič, P.: Consistent velocity approximation for finite volume or element discretizations of density driven flow in porous media. In: Aldama, A., et al. (eds.) Computational Methods in Water Resources XI – Computational Methods in Subsurface Flow and Transport Problems, vol. 1, pp. 93–100. Computational Mechanics Publications, Southampton (1996)

    Google Scholar 

  77. Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable-density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1998)

    Google Scholar 

  78. Konikow, L., Sanford, W., Campbell, P.: Constant-concentration boundary condition: lessons from the HYDROCOIN variable-density groundwater benchmark problem. Water Resour. Res. 33(10), 2253–2261 (1997)

    Google Scholar 

  79. Krieger, R., Hatchett, J., Poole, J.: Preliminary survey of the saline-water resources of the United States. Technical report Water-Supply Paper 1374, p. 172, US Geological Survey (1957)

    Google Scholar 

  80. Kvernvold, O., Tyvand, P.: Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90(4), 609–624 (1979)

    Google Scholar 

  81. Kvernvold, O., Tyvand, P.: Dispersion effects on thermal convection in porous media. J. Fluid Mech. 99(4), 673–686 (1980)

    Google Scholar 

  82. Kvernvold, O., Tyvand, P.: Dispersion effects on thermal convection in a Hele-Shaw cell. Int. J. Heat Mass Transf. 24(5), 887–890 (1981)

    Google Scholar 

  83. Lapwood, E.: Convection of a fluid in a porous medium. Math. Proc. Camb. Phil. Soc. 44(4), 508–521 (1948)

    Google Scholar 

  84. Leijnse, A.: Three-dimensional modeling of coupled flow and transport in porous media. Ph.D. thesis, University of Notre Dame, Indiana (1992)

    Google Scholar 

  85. Leijnse, A.: Comparison of solution methods for coupled flow and transport in porous media. In: Peters, A., et al. (eds.) Proceedings of the 10th International Conference on Computational Methods in Water Resources, Heidelberg, vol. 1, pp. 489–496. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  86. Mazzia, A., Putti, M.: High order Godunov mixed methods on tetrahedral meshes for density driven flow simulations in porous media. J. Comput. Phys. 208(1), 154–174 (2005)

    Google Scholar 

  87. Mazzia, A., Bergamaschi, L., Putti, M.: On the reliability of numerical solutions of brine transport in groundwater: analysis of infiltration from a salt lake. Transp. Porous Media 43(1), 65–86 (2001)

    Google Scholar 

  88. McKibbin, R., O’Sullivan, M.: Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96(2), 375–393 (1980)

    Google Scholar 

  89. McKibbin, R., O’Sullivan, M.: Heat transfer in layered porous medium heated from below. J. Fluid Mech. 111, 141–173 (1981)

    Google Scholar 

  90. McKibbin, R., Tyvand, P.: Anisotropic modelling of thermal convection in multilayered porous media. J. Fluid Mech. 118, 315–339 (1982)

    Google Scholar 

  91. McKibbin, R., Tyvand, P.: Thermal convection in a porous medium with horizontal cracks. Int. J. Heat Mass Transf. 27(7), 1007–1023 (1984)

    Google Scholar 

  92. Murray, B., Chen, C.: Double-diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Google Scholar 

  93. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). Reprinted by J.W. Edwards, Ann Arbor, 1946

    Google Scholar 

  94. Nield, D.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4(3), 553–560 (1968)

    Google Scholar 

  95. Nield, D.: The stability of convective flows in porous media. In: Kakaç, S., et al. (eds.) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, pp. 79–122. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  96. Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  97. Nield, D., Simmons, C., Kuznetsov, A., Ward, J.: On the evolution of salt lakes: episodic convection beneath an evaporating salt lake. Water Resour. Res. 44(W02439), 1–13 (2008). doi:http://dx.doi.org/10.1029/2007WR006161

  98. Oldenburg, C., Pruess, K.: Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Resour. Res. 31(2), 289–302 (1995)

    Google Scholar 

  99. Oldenburg, C., Pruess, K.: Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Media 33(1/2), 29–63 (1998)

    Google Scholar 

  100. Oldenburg, C., Pruess, K., Travis, B.: Reply to: comment on ‘dispersive transport dynamics in a strongly coupled groundwater-brine flow system’ by Johns, R.T. and Rivera, A. Water Resour. Res. 32(11), 3411–3412 (1996)

    Google Scholar 

  101. Oltean, C., Bués, M.: Coupled groundwater flow and transport in porous media. A conservative or non-conservative form? Transp. Porous Media 44(2), 219–246 (2001)

    Google Scholar 

  102. Oswald, S.: Dichteströmungen in porösen Medien: Dreidimensionale Experimente und Modellierungen (density driven flows in porous media: three-dimensional experiments and modeling). Ph.D. thesis, ETH Zurich, Switzerland (1998)

    Google Scholar 

  103. Oswald, S., Kinzelbach, W.: A three-dimensional physical model for verification of variable-density flow codes. In: Stauffer, F., et al. (eds.) MODELCARE99 – Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty, Zurich, 1999. IAHS Publication, No. 265, pp. 399–404. IAHS (2000)

    Google Scholar 

  104. Oswald, S., Kinzelbach, W.: Three-dimensional physical benchmark experiments to test variable-density flow models. J. Hydrol. 290(1–2), 22–42 (2004)

    Google Scholar 

  105. Park, C.H., Aral, M.: Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations. J. Contam. Hydrol. 92(1–2), 33–49 (2007)

    Google Scholar 

  106. Pinder, G., Cooper, H.: A numerical technique for calculating the transient position of the saltwater front. Water Resour. Res. 6(3), 875–882 (1970)

    Google Scholar 

  107. Prasad, V., Kladias, N.: Non-Darcy natural convection in saturated porous media. In: Kakaç, S., et al. (eds.) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, pp. 173–224. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  108. Prasad, A., Simmons, C.: Unstable density-driven flow in heterogeneous media: a stochastic study of the Elder [1967b] ‘short heater’ problem. Water Resour. Res. 39(1), 107 (2003). doi:http://dx.doi.org/10.1029/2002WR001290

  109. Pringle, S., Glass, R., Cooper, C.: Double-diffusive finger convection in a Hele-Shaw cell: an experiment exploring the evolution of concentration fields, length scales and mass transfer. Transp. Porous Media 47(2), 195–214 (2002)

    Google Scholar 

  110. Putti, M., Paniconi, C.: Picard and Newton linearization for the coupled model of saltwater intrusion in aquifer. Adv. Water Resour. 18(3), 159–170 (1995)

    Google Scholar 

  111. Reilly, T., Goodman, A.: Quantitative analysis of saltwater-freshwater relationships in groundwater systems – a historical perspective. J. Hydrol. 80(1–2), 125–160 (1985)

    Google Scholar 

  112. Reilly, T., Goodman, A.: Analysis of saltwater upconing beneath a pumping well. J. Hydrol. 89(3–4), 169–204 (1987)

    Google Scholar 

  113. Riley, D., Winters, K.: Modal exchange mechanisms in Lapwood convection. J. Fluid Mech. 204, 325–358 (1989)

    Google Scholar 

  114. Rubin, H.: Onset of thermohaline convection in a cavernous aquifer. Water Resour. Res. 12(2), 141–147 (1976)

    Google Scholar 

  115. Rubin, H., Roth, C.: On the growth of instabilities in groundwater due to temperature and salinity gradients. Adv. Water Resour. 2, 69–76 (1979)

    Google Scholar 

  116. Rubin, H., Roth, C.: Thermohaline convection in flowing groundwater. Adv. Water Resour. 6(3), 146–156 (1983)

    Google Scholar 

  117. Sarler, B., Gobin, D., Goyeau, B., Perko, J., Power, H.: Natural convection in porous media – dual reciprocity boundary element method solution of the Darcy model. Int. J. Numer. Methods Fluids 33(2), 279–312 (2000)

    Google Scholar 

  118. Schneider, K.: Investigation on the influence of free thermal convection on heat transfer through granular material. In: Proceedings of the 11th International Congress of Refrigeration, Paper 11-4, Munich, pp. 247–253. Pergamon, Oxford (1963)

    Google Scholar 

  119. Schotting, R., Moser, H., Hassanizadeh, S.: High-concentration-gradient dispersion in porous media: experiments, analysis and approximations. Adv. Water Resour. 22(7), 665–680 (1999). doi:http://dx.doi.org/10.1016/S0309-1708(98)00052-9

  120. Schubert, G., Straus, J.: Three-dimensional and multicellular steady and unsteady convection in fluid-saturated porous media at high Rayleigh numbers. J. Fluid Mech. 94(1), 25–38 (1979)

    Google Scholar 

  121. Schubert, G., Straus, J.: Transitions in time-dependent thermal convection in fluid-saturated porous media. J. Fluid Mech. 121, 301–313 (1982)

    Google Scholar 

  122. Segol, G.: Classic Groundwater Simulations: Proving and Improving Numerical Models. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  123. Segol, G., Pinder, G.: Transient simulation of saltwater intrusion in southeastern Florida. Water Resour. Res. 12(1), 65–70 (1976)

    Google Scholar 

  124. Segol, G., Pinder, G., Gray, W.: A Galerkin-finite element technique for calculating the transient position of the saltwater front. Water Resour. Res. 11(2), 343–347 (1975)

    Google Scholar 

  125. Simmons, C.: Variable density groundwater flow: from current challenges to future possibilities. Hydrogeol. J. 13(1), 116–119 (2005)

    Google Scholar 

  126. Simmons, C., Narayan, K., Wooding, R.: On a test case for density-dependent groundwater flow and solute transport models: the salt lake problem. Water Resour. Res. 35(12), 3607–3620 (1999)

    Google Scholar 

  127. Simmons, C., Fenstemaker, T., Sharp, J., Jr.: Variable-density flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol. 52(1–4), 245–275 (2001)

    Google Scholar 

  128. Simmons, C., Pierini, M., Hutson, J.: Laboratory investigation of variable-density flow and solute transport in unsaturatedsaturated porous media. Transp. Porous Media 47(2), 215–244 (2002)

    Google Scholar 

  129. Simpson, M., Clement, T.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 40(W01504), 1–11 (2004). doi:http://dx.doi.org/10.1029/2003WR002199

  130. Steen, P., Aidun, C.: Transition of oscillatory convective heat transfer in a fluid-saturated porous medium. AIAA J. Thermophys. Heat Transf. 1(3), 268–273 (1987)

    Google Scholar 

  131. Strack, O.: Groundwater Mechanics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  132. Straus, J.: Large amplitude convection in porous media. J. Fluid Mech. 64(1), 51–63 (1974)

    Google Scholar 

  133. Straus, J., Schubert, G.: Three-dimensional convection in a cubic box of fluid-saturated porous material. J. Fluid Mech. 91(1), 155–165 (1979)

    Google Scholar 

  134. Straus, J., Schubert, G.: Modes of finite-amplitude three-dimensional convection in rectangular boxes of fluid-saturated porous material. J. Fluid Mech. 103, 23–32 (1981)

    Google Scholar 

  135. Taunton, J., Lightfoot, E., Green, T.: Thermohaline instability and salt fingers in a porous medium. Phys. Fluids 15(5), 748–753 (1972)

    Google Scholar 

  136. Thiele, K.: Adaptive finite volume discretization of density driven flows in porous media. Ph.D. thesis, Institute of Applied Mathematics, University of Erlangen-Nürnberg, Germany (1999)

    Google Scholar 

  137. Tien, C.L., Vafai, K.: Convective and radiative heat transfer in porous media. Adv. Appl. Mech. 27, 225–281 (1989)

    Google Scholar 

  138. Trevisan, O., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28(8), 1597–1611 (1985)

    Google Scholar 

  139. Turner, J.: Buoyancy Effects in Fluids. Cambridge University Press, New York (1979)

    Google Scholar 

  140. Turner, J.: Multicomponent convection. Annu. Rev. Fluid Mech. 17, 11–44 (1985)

    Google Scholar 

  141. Turner, J.: Laboratory models of double-diffusive processes. In: Brandt, A., Fernando, H. (eds.) Double-Diffusive Convection. Geophysical Monograph, vol. 94, pp. 11–29. American Geophysical Union, Washington, DC (1995)

    Google Scholar 

  142. Tyvand, P.: Thermohaline instability in anisotropic porous media. Water Resour. Res. 16(2), 325–330 (1980)

    Google Scholar 

  143. Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999)

    Google Scholar 

  144. Vadasz, P., Olek, S.: Computational recovery of the homoclinic orbit in porous media convection. Int. J. Non-Linear Mech. 34(6), 1071–1075 (1999)

    Google Scholar 

  145. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000)

    Google Scholar 

  146. van Reeuwijk, M., Mathias, S., Simmons, C., Ward, J.: Insights from a pseudospectral approach to the Elder problem. Water Resour. Res. 45(W04416), 1–13 (2009). doi:http://dx.doi.org/10.1029/2008WR007421

    Google Scholar 

  147. Volker, R., Rushton, K.: An assessment of the importance of some parameters for seawater intrusion and a comparison of dispersive and sharp-interface modeling approaches. J. Hydrol. 56(3–4), 239–250 (1982)

    Google Scholar 

  148. Voss, C.: A finite-element simulation model for saturated-unsaturated fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. Technical report, Water Resources Investigations, report 84-4369, p. 409, US Geological Survey (1984)

    Google Scholar 

  149. Voss, C.: USGS SUTRA code – history, practical use, and application in Hawaii. In: Bear, J., et al. (eds.) Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, pp. 249–313. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  150. Voss, C., Souza, W.: Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 23(10), 1851–1866 (1987)

    Google Scholar 

  151. Walker, K., Homsy, G.: A note on convective instabilities in Boussinesq fluids and porous media. ASME J. Heat Transf. 99(2), 338–339 (1977)

    Google Scholar 

  152. Werner, A., Bakker, M., Post, V., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C., Barry, D.: Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013)

    Google Scholar 

  153. Wooding, R.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2(3), 273–285 (1957)

    Google Scholar 

  154. Wooding, R.: Variable-density saturated flow with modified Darcy’s law: the salt lake problem and circulation. Water Resour. Res. 43(W02429), 1–10 (2007). doi:http://dx.doi.org/10.1029/2005WR004377

  155. Wooding, R., Tyler, S., White, I.: Convection in groundwater below an evaporating salt lake, 1. Onset of instability. Water Resour. Res. 33(6), 1199–1217 (1997)

    Google Scholar 

  156. Wooding, R., Tyler, S., White, I., Anderson, P.: Convection in groundwater below an evaporating salt lake, 2. Evolution of fingers or plumes. Water Resour. Res. 33(6), 1219–1228 (1997)

    Google Scholar 

  157. Woods, J., Carey, G.: Upwelling and downwelling behavior in the Elder-Voss-Souza benchmark. Water Resour. Res. 43(W12405), 1–12 (2007). doi:http://dx.doi.org/10.1029/2006WR004918

  158. Xie, Y., Simmons, C., Werner, A., Ward, J.: Effect of transient solute loading on free convection in porous media. Water Resour. Res. 46(W11511), 1–16 (2010). doi:http://dx.doi.org/10.1029/2010WR009314

    Google Scholar 

  159. Xie, Y., Simmons, C., Werner, A., Diersch, H.J.: Prediction and uncertainty of free convection phenomena in porous media. Water Resour. Res. 48(2,W02535), 1–12 (2012). doi:http://dx.doi.org/10.1029/2011WR011346

  160. Younes, A., Ackerer, P., Mosé, R.: Modeling variable density flow and solute transport in porous medium: 2. Re-evaluation of the salt dome flow problem. Transp. Porous Media 35(3), 375–394 (1999)

    Google Scholar 

  161. Zidane, A., Younes, A., Huggenberger, P., Zechner, E.: The Henry semianalytical problem for saltwater intrusion with reduced dispersion. Water Resour. Res. 48(W06533), 1–10 (2012). doi:http://dx.doi.org/10.1029/2011WR011157

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diersch, HJ.G. (2014). Variable-Density Flow, Mass and Heat Transport in Porous Media. In: FEFLOW. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38739-5_11

Download citation

Publish with us

Policies and ethics