Skip to main content

A Physarum Network Evolution Model Based on IBTM

  • Conference paper
Advances in Swarm Intelligence (ICSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7929))

Included in the following conference series:

Abstract

The traditional Cellular Automation-based Physarum model reveals the process of amoebic self-organized movement and self-adaptive network formation based on bubble transportation. However, a bubble in the traditional Physarum model often transports within active zones and has little change to explore new areas. And the efficiency of evolution is very low because there is only one bubble in the system. This paper proposes an improved model, named as Improved Bubble Transportation Model (IBTM). Our model adds a time label for each grid of environment in order to drive bubbles to explore new areas, and deploys multiple bubbles in order to improve the evolving efficiency of Physarum network. We first evaluate the morphological characteristics of IBTM with the real Physarum, and then compare the evolving time between the traditional model and IBTM. The results show that IBTM can obtain higher efficiency and stability in the process of forming an adaptive network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakagaki, T., Yamada, H., Hara, M.: Smart Network Solutions in an Amoeboid Organism. Biophysical Chemistry 107(1), 1–6 (2004)

    Article  Google Scholar 

  2. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining Multiple Separate Food Sources: Behavioural Intelligence in the Physarum Plasmodium. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1554), 2305–2310 (2004)

    Article  Google Scholar 

  3. Adamatzky, A., Jones, J.: Road Planning with Slime Mould: If Physarum Built Motorways It Would Route M6/M74 through Newcastle. International Journal of Bifurcation and Chaos 20(10), 3065–3084 (2010)

    Article  MathSciNet  Google Scholar 

  4. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for Biologically Inspired Adaptive Network Design. Science Signalling 327(5964), 439 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Adamatzky, A.: Route 20, Autobahn 7 and Physarum Polycephalum: Approximating Longest Roads in USA and Germany with Slime Mould on 3D Terrains. arXiv preprint arXiv:1211.0519 (2012)

    Google Scholar 

  6. Jones, J.: Characteristics of Pattern Formation and Evolution in Approximations of Physarum Transport Networks. Artificial Life 16(2), 127–153 (2010)

    Article  Google Scholar 

  7. Nakagaki, T., Guy, R.D.: Intelligent Behaviors of Amoeboid Movement Based on Complex Dynamics of Soft Matter. Soft Matter 4(1), 57–67 (2007)

    Article  Google Scholar 

  8. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an Amoeboid Organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  9. Tero, A., Kobayashi, R., Nakagaki, T.: A Mathematical Model for Adaptive Transport Network in Path Finding by True Slime Mold. Journal of Theoretical Biology 244(4), 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  10. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific Publishing Company Incorporated (2010)

    Google Scholar 

  11. Adamatzky, A.: Physarum Machines: Encapsulating Reaction-diffusion to Compute Spanning Tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  12. Jones, J.: The Emergence and Dynamical Evolution of Complex Transport Networks from Simple Low-level Behaviours. International Journal of Unconventional Computing 6(2), 125–144 (2010)

    Google Scholar 

  13. Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal Model of a Cell Connecting Amoebic Motion and Adaptive Transport Networks. Journal of Theoretical Biology 253(4), 659–667 (2008)

    Article  Google Scholar 

  14. Niizato, T., Shirakawa, T., Gunji, Y.P.: A Model of Network Formation by Physarum Plasmodium: Interplay between Cell Mobility and Morphogenesis. Biosystems 100(2), 108–112 (2010)

    Article  Google Scholar 

  15. Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An Adaptive and Robust Biological Network Based on the Vacant-particle Transportation Model. Journal of Theoretical Biology 272(1), 187 (2011)

    Article  Google Scholar 

  16. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum Solver: A Biologically Inspired Method of Road-network Navigation. Physica A: Statistical Mechanics and Its Applications 363(1), 115–119 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Zhang, Z., Gao, C., Wu, Y., Qian, T. (2013). A Physarum Network Evolution Model Based on IBTM. In: Tan, Y., Shi, Y., Mo, H. (eds) Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38715-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38715-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38714-2

  • Online ISBN: 978-3-642-38715-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics