Multi-swarm Particle Swarm Optimization with a Center Learning Strategy

  • Ben Niu
  • Huali Huang
  • Lijing Tan
  • Jane Jing Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)


This paper proposes a new variant of particle swarm optimizers, called multi-swarm particle swarm optimization with a center learning strategy (MPSOCL). MPSOCL uses a center learning probability to select the center position or the prior best position found so far as the exemplar within each swarm. In MPSOCL, Each particle updates its velocity according to the experience of the best performing particle of its partner swarm and its own swarm or the center position of its own swarm. Experiments are conducted on five test functions to compare with some variants of the PSO. Comparative results on five benchmark functions demonstrate that MPSOCL achieves better performances in both the optimum achieved and convergence performance than other algorithms generally.


multi-swarm particle swarm optimization center learning strategy particle swarm optimizer (PSO) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceeding of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  3. 3.
    Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Proceedings of 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73 (1998)Google Scholar
  4. 4.
    Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1671–1676 (2002)Google Scholar
  5. 5.
    Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio Based Particle Swarm Optimization. In: Proceeding of the 2003 IEEE Swarm Intelligence Symposium, pp. 174–181 (2003)Google Scholar
  6. 6.
    Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)CrossRefGoogle Scholar
  7. 7.
    Parsopoulos, K.E., Vrahatis, M.N.: UPSO–A Unified Particle Swarm Optimization scheme. Lecture Series on Computational Sciences, pp. 868–873 (2004)Google Scholar
  8. 8.
    Clerc, M., Kennedy, J.: The Particle Swarm-explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  9. 9.
    Niu, B., Zhu, Y., He, X.X., Wu, H.: MCPSO: A Multi-swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation 185(2), 1050–1062 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  11. 11.
    Niu, B., Li, L.: An Improved MCPSO with Center Communication. In: Proceedings of 2008 International Conference on Computational Intelligence and Security, pp. 57–61 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ben Niu
    • 1
    • 2
    • 3
  • Huali Huang
    • 1
  • Lijing Tan
    • 4
  • Jane Jing Liang
    • 5
  1. 1.College of ManagementShenzhen UniversityShenzhenChina
  2. 2.Department of Industrial and System EngineeringThe Hong Kong Polytechnic UniversityHong Kong
  3. 3.Hefei Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina
  4. 4.Management SchoolJinan UniversityGuangzhouChina
  5. 5.School of Electrical EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations