Advertisement

Particle Swarm Optimization in Regression Analysis: A Case Study

  • Shi Cheng
  • Chun Zhao
  • Jingjin Wu
  • Yuhui Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)

Abstract

In this paper, we utilized particle swarm optimization algorithm to solve a regression analysis problem in dielectric relaxation field. The regression function is a nonlinear, constrained, and difficult problem which is solved by traditionally mathematical regression method. The regression process is formulated as a continuous, constrained, single objective problem, and each dimension is dependent in solution space. The object of optimization is to obtain the minimum sum of absolute difference values between observed data points and calculated data points by the regression function. Experimental results show that particle swarm optimization can obtain good performance on regression analysis problems.

Keywords

Particle swarm optimization regression analysis regression models weighted least absolute difference value 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 120–127 (April 2007)Google Scholar
  2. 2.
    Cheng, S., Shi, Y., Qin, Q.: Experimental study on boundary constraints handling in particle swarm optimization: From population diversity perspective. International Journal of Swarm Intelligence Research (IJSIR) 2(3), 43–69 (2011)CrossRefGoogle Scholar
  3. 3.
    Cheng, S., Shi, Y., Qin, Q.: Promoting diversity in particle swarm optimization to solve multimodal problems. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 228–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Cheng, S., Shi, Y., Qin, Q.: Population diversity based study on search information propagation in particle swarm optimization. In: Proceedings of 2012 IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1272–1279. IEEE, Brisbane (2012)Google Scholar
  5. 5.
    Cheng, S., Shi, Y., Qin, Q.: Population diversity of particle swarm optimizer solving single and multi-objective problems. International Journal of Swarm Intelligence Research (IJSIR) 3(4), 23–60 (2012)CrossRefGoogle Scholar
  6. 6.
    Cheng, S., Shi, Y., Qin, Q., Ting, T.O.: Population diversity based inertia weight adaptation in particle swarm optimization. In: Proceedings of The Fifth International Conference on Advanced Computational Intelligence (ICACI 2012), pp. 395–403. IEEE, Nanjing (2012)CrossRefGoogle Scholar
  7. 7.
    Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  8. 8.
    Debye, P.J.W.: Polar Molecules. Chemical Catalogue Company, New York (1929)zbMATHGoogle Scholar
  9. 9.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  10. 10.
    Eberhart, R., Shi, Y.: Particle swarm optimization: Developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 81–86 (2001)Google Scholar
  11. 11.
    Eberhart, R., Shi, Y.: Computational Intelligence: Concepts to Implementations, 1st edn. Morgan Kaufmann Publisher (2007)Google Scholar
  12. 12.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer Series in Statistics. Springer (February 2009)Google Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  14. 14.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publisher (2001)Google Scholar
  15. 15.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)CrossRefGoogle Scholar
  16. 16.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 Congress on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)Google Scholar
  17. 17.
    Zhao, C., Zhao, C.Z., Tao, J., Werner, M., Taylor, S., Chalker, P.R.: Dielectric relaxation of lanthanide-based ternary oxides: physical and mathematical models. Journal of Nanomaterials 2012, 1–6 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shi Cheng
    • 1
    • 2
  • Chun Zhao
    • 1
    • 2
  • Jingjin Wu
    • 1
    • 2
  • Yuhui Shi
    • 2
  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Electrical & Electronic EngineeringXi’an Jiaotong-Liverpool UniversitySuzhouChina

Personalised recommendations