Skip to main content

Evolutionary Three-Stage Approach for Designing of Neural Networks Ensembles for Classification Problems

  • Conference paper
Book cover Advances in Swarm Intelligence (ICSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7928))

Included in the following conference series:

Abstract

The use of the neural network ensemble approach for solving classification problems is discussed. Methods for forming ensembles of neural networks and methods for combining solutions in ensembles of classifiers are reviewed briefly. The main ideas of comprehensive evolutionary approach for automatic design of neural network ensembles are described. A new variant of a three-stage evolutionary approach to decision making in ensembles of neural networks is proposed for classification problems. The technique and results of a comparative statistical investigation of various methods for producing of ensembles decisions on several well-known test problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  2. Rastrigin, L.A., Erenstein, R.H.: Method of collective recognition. Energoizdat, Moscow (1981)

    Google Scholar 

  3. Javadi, M., Ebrahimpour, R., Sajedin, A., Faridi, S., Zakernejad, S.: Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules. PLoS One 6 (2011)

    Google Scholar 

  4. Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble method for neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 126–142. Chapman & Hall, New York (1993)

    Google Scholar 

  5. Shimshoni, Y., Intrator, N.: Classification of seismic signals by integrating ensembles of neural networks. IEEE Transactions on Signal Processing 46(5), 1194–1201 (1998)

    Article  Google Scholar 

  6. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  7. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2010), http://archive.ics.uci.edu/ml

    Google Scholar 

  8. Belew, R.K.: Evolving networks: Using genetic algorithm with connectionist learning. Technical report CS90-174, Computer Science and Engineering Department. University of California, San Diego (1991)

    Google Scholar 

  9. Bukhtoyarov, V., Semenkina, O.: Comprehensive evolutionary approach for neural network ensemble automatic design. In: Proceedings of 2010 IEEE World Congress on Computational Intelligence, Barcelona, pp. 1640–1645 (2010)

    Google Scholar 

  10. Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 405–410 (1997)

    Article  Google Scholar 

  11. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  12. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. Transactions on Systems, Man, and Cybernetics 22, 418–435 (1992)

    Article  Google Scholar 

  13. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6, 21–45 (2006)

    Article  Google Scholar 

  14. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)

    Article  MATH  Google Scholar 

  15. Rokach, L., Maimon, O., Arad, O.: Improving supervised learning by sample decomposition. Int. J. Comput. Intell. Appl. 5(1), 37–54 (2005)

    Article  Google Scholar 

  16. Rokach, L., Maimon, O., Lavi, I.: Space decomposition in data mining: A clustering approach. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 24–31. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multiclass problems. Artificial Intelligence Review 30(1–4), 19–37 (2008)

    Article  Google Scholar 

  18. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Sun, Y., Wong, A.C., Kamel, M.S.: Classification of imbalanced data: a review. International Journal of Pattern Recognition and Artificial Intelligence 23(4), 687–719 (2009)

    Article  Google Scholar 

  20. Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with Naive Bayes classifiers. Pattern Recognition 41(2), 662–671 (2008)

    Article  MATH  Google Scholar 

  21. Koza, J.R.: The Genetic Programming Paradigm: Genetically Breeding Populations of Computer Programs to Solve Problems. MIT Press, Cambridge (1992)

    Google Scholar 

  22. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  23. Sergienko, R.B., Semenkin, E.S., Bukhtoyarov, V.V.: Michigan and Pittsburgh Methods Combining for Fuzzy Classifier Generating with Coevolutionary Algorithm for Strategy Adaptation. In: Proceedings of 2011 IEEE Congress on Evolutionary Computation, New Orleans, LA, USA (2011)

    Google Scholar 

  24. Bailey, R.A.: Design of Comparative Experiments. Cambridge University Press (2008)

    Google Scholar 

  25. Islam, M.M., Yao, X., Murase, K.: A constructive algorithm for training cooperative neural network ensembles. IEEE Trans. Neural Netw. 14, 820–834 (2003)

    Article  Google Scholar 

  26. Breiman, L.: Randomizing outputs to increase prediction accuracy. Mach. Learn. 40, 229–242 (2000)

    Article  MATH  Google Scholar 

  27. Garcia, N., Hervas, C.: Ortiz. D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation 9(3), 271–302 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bukhtoyarov, V., Semenkin, E. (2013). Evolutionary Three-Stage Approach for Designing of Neural Networks Ensembles for Classification Problems. In: Tan, Y., Shi, Y., Mo, H. (eds) Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38703-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38703-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38702-9

  • Online ISBN: 978-3-642-38703-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics