Advertisement

Maturity of the Particle Swarm as a Metric for Measuring the Collective Intelligence of the Swarm

  • Zdenka Winklerová
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)

Abstract

The particle swarm collective intelligence has been recognized as a tool for dealing with the optimization of multimodal functions with many local optima. In this article, a research work is introduced in which the cooperative Particle Swarm Optimization strategies are analysed and the collective intelligence of the particle swarm is assessed according to the proposed Maturity Model. The model is derived from the Maturity Model of C2 (Command and Control) operational space and the model of Collaborating Software. The aim was to gain a more thorough explanation of how the intelligent behaviour of the particle swarm emerges. It has been concluded that the swarm system is not mature enough because of the lack of the system’s awareness, and that a solution would be some adaptation of particle’s behavioural rules so that the particle could adjust its velocity using control parameters whose value would be derived from inside of the swarm system, without tuning.

Keywords

Particle Swarm Optimizer Particle Swarm Particle Swarm Optimizer Algorithm Inertia Weight Collective Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  3. 3.
    Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)CrossRefGoogle Scholar
  4. 4.
    Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: Proceedings of International Conference on Evolutionary Computation, Indianapolis, USA, pp. 303–308 (1997)Google Scholar
  5. 5.
    Clearwater, S.H., Hubermann, B.A., Hogg, T.: Cooperative Problem Solving. In: Computation: The Micro and Macro View, pp. 33–70. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  6. 6.
    Moffat, J., Alberts, D.S.: Maturity Levels for NATO NEC. TR21958 V 2.0, Defence Science & Technology Laboratory, U.K (December 2006)Google Scholar
  7. 7.
    Alberts, D.S., Huber, R.K., Moffat, J.: NATO NEC C2 maturity model. DoD Command and Control Research Program (February 2010) ISBN 978-1-893723-21-4Google Scholar
  8. 8.
    Alberts, D.S., Hayes, R.E.: Power to the Edge Command.. Control.. in the Information Age, 1st printing. CCRP Publication Series, Washington, D.C. (June 2003) (reprint June 2004) ISBN 1-893723-13-5Google Scholar
  9. 9.
    Llinas, J., Bowman, C., Rogova, G., Walz, E., White, F.: Revisiting the JDL Data Fusion Model. In: Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden (2004)Google Scholar
  10. 10.
    Corkill Daniel, D.: Collaborating Software: Blackboard and Multi-Agent Systems & the Future. In: Proceedings of the International Lisp Conference, New York (2003)Google Scholar
  11. 11.
    Kennedy, J.: Small Worlds and Mega-Minds: Effect of Neighborhood Topology on Particle Swarm Performance. In: Proceedings of the Congress on Evolutionary Computation, Washington, DC, USA, pp. 1931–1938 (July 1999)Google Scholar
  12. 12.
    Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, Hawaii, USA, pp. 1671–1676 (2002)Google Scholar
  13. 13.
    Peer, E.S., van den Bergh, F.: Engelbrecht, A. P.: Using Neighborhoods with the Guaranteed Convergence PSO. In: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, USA, pp. 235–242 (2003)Google Scholar
  14. 14.
    Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimiser. In: Proceedings of the IEEE International Conference of Evolutionary Computation, Anchorage, Alaska, pp. 69–73 (May 1998)Google Scholar
  15. 15.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proc. of IEEE International Congress on Evolutionary Computation, vol. 3, pp. 1945–1950 (1999)Google Scholar
  16. 16.
    Eberhart, R.C., Shi, Y.: Tracking and Optimizing Dynamic Systems with Particle Swarms. In: Proc. of IEEE Congress on Evolutionary Computation 2001, Seoul, Korea, pp. 94–100 (2001)Google Scholar
  17. 17.
    Angeline, P.J.: Evolutionary Optimization Verses Particle Swarm Optimization: Philosophy and the Performance Difference. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    van den Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD thesis. Department of Computer Science, University of Pretoria. South Africa (2002)Google Scholar
  19. 19.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  20. 20.
    Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)CrossRefGoogle Scholar
  21. 21.
    Torney, C., Neufeld, Z., Couzin, I.D.: Context – Dependent Interaction Leads to Emergent Search Behavior in Social Aggregates. PNAS 106(52), 22055–22060 (2009)CrossRefGoogle Scholar
  22. 22.
    Clerc, M., Kennedy, J.: The Particle Swarm – Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  23. 23.
    Fernández Martínez, J.L., García Gonzalo, E.: The PSO Family: Detection, Stochastic Analysis and Comparison. Swarm Intell. 3(4), 245–273 (2009), doi:10.1007/s11721-009-0034-8CrossRefGoogle Scholar
  24. 24.
    Ismail, A., Engelbrecht, A.P.: Measuring Diversity in the Cooperative Particle Swarm Optimizer. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 97–108. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Ismail, A., Engelbrecht, A.P.: The Self-adaptive Comprehensive Learning Particle Swarm Optimizer. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 156–167. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Winklerová, Z.: Maturity of the Particle Swarm as a Metric for Measuring the Particle Swarm Intelligence. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 348–349. Springer, Heidelberg (2012) ISBN 978-3-642-32649-3, ISSN 0302-9743, doi:10.1007/978-3-642-32650-9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zdenka Winklerová
    • 1
  1. 1.Dept. of Intelligent SystemsBrno University of TechnologyBrnoCzech Republic

Personalised recommendations