Advertisement

Algorithms and Framework for Comparison of Bee-Intelligence Based Peer-to-Peer Lookup

  • Vesna Šešum-Čavić
  • Eva Kühn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)

Abstract

Peer-to-peer has proven to be a scalable technology forretrieval of information that is widely spread among distributed sites and that is subject to dynamic changes. However, selection of a right search algorithm depends on many factors related to actual data content and application problem at hand. A comparison of different algorithms is difficult, especially if many different approaches (intelligent or unintelligent ones) shall be evaluated fairly and possibly also in combinations. In this paper, we describe a generic architectural pattern that serves as an overlay network based on autonomous agents and decentralized control. It supports plugging of different algorithms for searching and retrieving data, and thus eases comparison of algorithms in various topology configurations. A further novelty is to use bee intelligence for the lookup problem, spot optimal parameters’ settings, and evaluate the bee algorithm by using the architectural pattern to benchmark it with other algorithms.

Keywords

information retrieval lookup mechanism bee intelligence distributed coordination patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of ModernPhysics 74, 47–97 (2002)zbMATHGoogle Scholar
  2. 2.
    Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36, 335–371 (2004)CrossRefGoogle Scholar
  3. 3.
    Apel, S., Buchmann, E.: Biology-Inspired Optimizations of Peer-to-Peer Overlay Networks. Quellenangabe Praxis der Informations. und Kommunikation 28(4) (2005)Google Scholar
  4. 4.
    Babaoglu, O., Meling, H., Montresor, A.: Anthill: A Framework for the Development of Agent-Based Peer-to-Peer Systems. In: 22th Int. Conf. on Distr.Comp. Systems (2002)Google Scholar
  5. 5.
    Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.: A self-organizing approach to tuple distribution in large-scale tuple-space systems. In: Hutchison, D., Katz, R.H. (eds.) IWSOS 2007. LNCS, vol. 4725, pp. 146–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dasgupta, P.: Intelligent agent enabled genetic ant algorithm for P2P resource discovery. In: Moro, G., Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI), vol. 3601, pp. 213–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications Networks. JAIR 9, 317–365 (1998)zbMATHGoogle Scholar
  8. 8.
    Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press (2005)Google Scholar
  9. 9.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. ACM Commun. 35, 97–107 (1992)CrossRefGoogle Scholar
  10. 10.
    Gudivada, V.N., Raghavan, V.V., Grosky, W.I., Kasanagottu, R.: Information Retrieval on the World Wide Web. IEEE Internet Computing 5, 58–68 (1997)CrossRefGoogle Scholar
  11. 11.
    Islam, M.H., Waheed, S., Zubair, I.: An efficient gossip based overlay network for peer-to-peer networks. In: 1st Int. Conf. on Ubiquitous and Future Networks, pp. 62–67. IEEE (2009)Google Scholar
  12. 12.
    Knoblock, C.A.: Searching the World Wide Web. IEEE Expert: Intelligent Systems and Their Applications 12, 8–14 (1997)Google Scholar
  13. 13.
    Lemmens, N., de Jong, S., Tuyls, K., Nowé, A.: Bee Behaviour in Multi-agent Systems. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D. (eds.) Adaptive Agents and MAS III. LNCS (LNAI), vol. 4865, pp. 145–156. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Li, H., Wu, Z., Ji, X.: Research on the Techniques for Effectively Searching and Retrieving Information from Internet. In: IEEE Int. Symp. Electronic Commerce and Security, pp. 99–102 (2008)Google Scholar
  15. 15.
    Liang, C.Y., Ming, L.T.: Small World Bee: Reduce Messages Flooding and Improve Recall Rate for Unstructured P2P System. Int. J. of Computer Science and Network Security 11(5) (2011)Google Scholar
  16. 16.
    Markovic, G., Teodorovic, D., Acimovic-Raspopovic, V.: Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun. 20(4), 273–285 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Nakrani, S., Tovey, C.: On honey bees and dynamic server allocation in the Internet hosting centers. Adaptive Behaviour 12, 223–240 (2004)CrossRefGoogle Scholar
  18. 18.
    Olague, G., Puente, C.: The Honeybee Search Algorithm for Three-Dimensional Reconstruction. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 427–437. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Pham, D.T., Koç, E., Lee, J.Y., et al.: Using the Bees Algorithm to schedule jobs for a machine. In: 8th Int. Conf. on Laser Metrology, pp. 430–439 (2007)Google Scholar
  20. 20.
    Ren, H., Xiao, N., Wang, Z.: An interest-based intelligent link selection algorithm in unstructured P2P environment. In: Jin, H., Rana, O.F., Pan, Y., Prasanna, V.K. (eds.) ICA3PP 2007. LNCS, vol. 4494, pp. 326–337. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Šešum-Cavic, V., Kühn, E.: Self-Organized Load Balancing through Swarm Intelligence. In: Bessis, N., Xhafa, F. (eds.) Next Generation Data Technologies for Collective Computational Intelligence. SCI, vol. 352, pp. 195–224. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Šešum-Cavic, V., Kühn, E.: A Swarm Intelligence Appliance to the Construction of an Intelligent Peer-to-Peer Overlay Network. In: Int. Conf. on Complex, Intelligent & Software Intensive Systems (CISIS), pp. 1028–1035. IEEE (2010)Google Scholar
  23. 23.
    Wong, L.P., Low, M.Y., Chong, C.S.: A Bee Colony Optimization for Traveling Salesman Problem. In: 2nd Asia Int. Conf. on Modelling & Simulation, pp. 818–823. AMS, IEEE (2008)Google Scholar
  24. 24.
    Yang, S.J.H., Zhang, J., Lin, L., Tsai, J.P.: Improving peer-to-peer search performance through intelligent social search. Expert Syst. Appl. 36(7), 10312–10324 (2009)CrossRefGoogle Scholar
  25. 25.
    Zhao, W.: A Novel Approach of Web Search Based on Community Wisdom. In: 3rd Int. Conf. on Internet and Web Applications and Services, pp. 431–436 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vesna Šešum-Čavić
    • 1
  • Eva Kühn
    • 1
  1. 1.Institute of Computer LanguagesTechnical University ViennaWienAustria

Personalised recommendations