Advertisement

A Simplified Biogeography-Based Optimization Using a Ring Topology

  • Yujun Zheng
  • Xiaobei Wu
  • Haifeng Ling
  • Shengyong Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)

Abstract

The paper proposes a new simplified version of biogeography-based optimization (BBO) algorithm. The original BBO is based on a global topology such that migration can occur between any pair of habitats (solutions), and we simplify it by using a local ring topology, where each habitat is only connected to two other habitats and the migration can only occur between neighboring habitats. The new strategy is quite easy to implement, but it contributes significantly to improving the search capability and preventing the habitats from being trapped in local optima. Computational experiment demonstrates the effectiveness of our approach on a set of benchmark problems.

Keywords

Global optimization biogeography-based optimization (BBO) migration ring topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  2. 2.
    Du, D., Simon, D., Ergezer, M.: Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: Proc. IEEE Conf. Syst. Man Cybern., San Antonio, TX, pp. 997–1002 (2009)Google Scholar
  3. 3.
    Song, Y., Liu, M., Wang, Z.: Biogeography-based optimization for the traveling salesman problems. In: Proc. 3rd Int’l J. Conf. Comput. Sci. Optim., Huangshan, China, pp. 295–299 (2010)Google Scholar
  4. 4.
    Simon, D., Ergezer, M., Du, D., Rarick, R.: Markov models for biogeography-based optimization. IEEE Trans. Syst. Man Cybern. Part B 41(1), 299–306 (2011)CrossRefGoogle Scholar
  5. 5.
    Gong, W., Cai, A., Ling, C.X.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput. 15(4), 645–665 (2010)CrossRefGoogle Scholar
  6. 6.
    Ma, H., Simon, D.: Blended biogeography-based optimization for constrained optimization. Eng. Appl. Artif. Intell. 24(3), 517–525 (2011)CrossRefGoogle Scholar
  7. 7.
    Boussaïd, I., Chatterjee, A., Siarry, P., Ahmed-Nacer, M.: Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO). Comput. Oper. Res. 38(8), 1188–1198 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Boussaïd, I., Chatterjee, A., Siarry, P., Ahmed-Nacer, M.: Biogeography-based optimization for constrained optimization problems. Comput. Oper. Res. 39(12), 3293–3304 (2011)CrossRefGoogle Scholar
  9. 9.
    MacArthur, R., Wilson, E.: The theory of biogeography. Princeton University Press, Princeton (1967)Google Scholar
  10. 10.
    Li, X.: Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)CrossRefGoogle Scholar
  11. 11.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)Google Scholar
  12. 12.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yujun Zheng
    • 1
  • Xiaobei Wu
    • 1
  • Haifeng Ling
    • 2
  • Shengyong Chen
    • 1
  1. 1.College of Computer Science & TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.College of Field EngineeringPLA University of Science & TechnologyNanjingChina

Personalised recommendations