Advertisement

Anomaly Detection in Hyperspectral Imagery Based on PSO Clustering

  • Baozhi Cheng
  • Zongguang Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)

Abstract

In this paper, we propose a novel anomaly targets detection algorithm baesd on information processing method and KRX anomaly detector. It use fully nolinear feature and decrease bands redundancy for hyperspectral imagery. Firstly, the original hyperspectral imagery is clustered by a new clustering method, i.e. k-clustering of particle swarm optimization. Then, we extract a largest fourth-order cumulant value in every class, and constitute a optimal band subset. Finally, the KRX detector is used on the band subset to get anomaly detection results. The simulation results demonstrate that the proposed PSOC-KRX algorithm outperforms the other algorithm, it is higher precision and lower false alarm rate.

Keywords

hyperspectral anomaly detection particle swarm optimization clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du, B., Zhang, L.: Random-Selection-Based Anomaly Detector for Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 49, 1578–1589 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Qi, B., Zhao, C.H., Youn, E., Nansen, C.: Use of Weighting Algorithms to Improve Traditional Support Vector Machine Based Classifications of Reflectance Data. Optics Express 19, 26816–26826 (2011)CrossRefGoogle Scholar
  3. 3.
    Reed, I.S., Yu, X.: Adaptive Multiple-Band CFAR Detection of an Optical Pattern With Unknown Spectral Distribution. IEEE Trans. Acoust., Speech Signal Process. 38, 1760–1770 (1990)CrossRefGoogle Scholar
  4. 4.
    Kwon, H., Nasrabad, N.M.: Kernel RX-Algorithm: A Nonlinear Anomaly Detector for Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 43, 388–397 (2005)CrossRefGoogle Scholar
  5. 5.
    Matteoli, S., Diani, M., Corsini, G.: Improved Estimation of Local Background Covariance Matrix for Anomaly Detection in Hyperspectral Images. Opt. Eng. 49, 046201-1- 046201-16 (2010)Google Scholar
  6. 6.
    Banerjee, A., Burlina, P., Dieh, C.: A Support Vector Method for Anomaly Detection In Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 44, 2282–2291 (2006)CrossRefGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)Google Scholar
  8. 8.
    Bazi, Y., Melgani, F.: Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation. IEEE Trans. Geosci. Remote Sens. 45, 1887–1895 (2006)CrossRefGoogle Scholar
  9. 9.
    Bazi, Y., Melgani, F.: Toward An Optimal SVM Classification System for Hyperspectral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 44, 3374–3385 (2006)CrossRefGoogle Scholar
  10. 10.
    Ghoggali, N., Melgani, F., Bazi, Y.: A multiobjective genetic SVM approach for classification problems with limited training samples. IEEE Trans. Geosci. Remote Sens. 47, 1707–1718 (2009)CrossRefGoogle Scholar
  11. 11.
    Paoli, M., Melgani, F.: Clustering of Hyperspectral Image Based on Multiobjective Particle Swarm Optimization. IEEE Transactions on Geoscience and Remote Sensing 47, 4175–4178 (2009)CrossRefGoogle Scholar
  12. 12.
    Niknam, T., Amiri, B.: An Efficient Hybrid Approach Based on PSO, ACO and K-Means for Cluster Analysis. Applied Soft Computing, 183-197 (2010)Google Scholar
  13. 13.
    Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis, pp. 303–322. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  14. 14.
    Matteoli, S., Diani, M., Corsini, G.: A Tutorial Overview of Anomaly Detection in Hyperspectral Images. IEEE Aerosp. Electron. Syst. Mag. Tutorials 25, 5–28 (2010)CrossRefGoogle Scholar
  15. 15.
    Hazai, S.K., Safari, A., Mojaradi, B., Homayouni, S.: A Fast-Adaptive Support Vector Method for Full-Pixel Anomaly Detection in Hyperspectral Images. In: 2011 IEEE Geoscience and Remote Sensing Society, Vancourer, Canada, pp. 1763–1766 (2011)Google Scholar
  16. 16.
    Gu, Y.F., Liu, Y., Zhang, Y.: A Selective Kpca Algorithm Based on High-Order Statistics For Anomaly Detection in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters 5, 43–47 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Baozhi Cheng
    • 1
  • Zongguang Guo
    • 1
  1. 1.College of Physics and Electricity Information EngineeringDaqing Normal UniversityDaqingChina

Personalised recommendations