Visualizing the Impact of Probability Distributions on Particle Swarm Optimization

  • Tjorben Bogon
  • Fabian Lorig
  • Ingo J. Timm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)


In this paper we present a simulation tool for the visualization of the impact of different probability distributions on Particle Swarm Optimization (PSO). PSO is influenced by a high number of random values in order to simulate a more nature like behaviour. Based on these random numbers the optimization process may vary. Usually the uniform distribution is chosen but regarding certain underlying fitness functions this may not the best choice. To test the influence of different probability distributions on PSO and to compare the different approaches, the presented simulation system consist of a simple user interface and allows the integration of own distribution formulas in order to test their impact on PSO.


Particle Swarm Optimization Probability Distributions Random Numbers Simulation System Visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Network, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, pp. 120–127 (2007)Google Scholar
  3. 3.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bogon, T., Poursanidis, G., Lattner, A.D., Timm, I.J.: Automatic Parameter Configuration of Particle Swarm Optimization by Classification of Function Features. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 554–555. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Pan, J.S., Huang, H.C., Jain, L.C.: Intelligent watermarking techniques. World Scientific, River Edge (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 80–87. IEEE Servoce Center, Piscataway (2003)Google Scholar
  7. 7.
    Feng, P., Xiaohui, H., Eberhart, R.C., Yaobin, C.: An analysis of Bare Bones Particle Swarm. In: IEEE Swarm Intelligence Symposium. IEEE, Piscataway (2008)Google Scholar
  8. 8.
    Richer, T.J., Blackwell, T.M.: The Lévy Particle Swarm. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 808–815 (2006)Google Scholar
  9. 9.
    Kennedy, J.: Dynamic-probabilistic particle swarms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 201–207. ACM, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Li, C., Liu, Y., Zhou, A., Kang, L., Wang, H.: A fast particle swarm optimization algorithm with cauchy mutation and natural selection strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 334–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Krohling, R., dos Santos Coelho, L.: Pso-e: Particle swarm with exponential distribution. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1428–1433 (2006)Google Scholar
  12. 12.
    Thangaraj, R., Pant, M., Deep, K.: Initializing pso with probability distributions and low-discrepancy sequences: The comparative results. In: World Congress on Nature Biologically Inspired Computing, NaBIC 2009, pp. 1121–1126 (December 2009)Google Scholar
  13. 13.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tjorben Bogon
    • 1
  • Fabian Lorig
    • 1
  • Ingo J. Timm
    • 1
  1. 1.Business Information Systems 1University of TrierGermany

Personalised recommendations