Skip to main content

Comparison of Two Memristor Based Neural Network Learning Schemes for Crossbar Architecture

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Included in the following conference series:

Abstract

This paper compares two neural network learning schemes in crossbar architecture, using memristive elements. Novel memristive crossbar architecture with dense synaptic connections suitable for online training was developed. Training algorithms and simulations of the two proposed learning schemes, winner adjustment training (WAT) and multiple adjustments training (MAT) are presented. Tests performed using MNIST handwritten character recognition benchmark dataset confirmed the functionality of proposed learning schemes. Proposed learning schemes were compared accounting for noise, device variations and multipath effects. The proposed learning schemes improve available neural network learning schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)

    Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Article  Google Scholar 

  4. Pershin, Y.V., Di Ventra, M.: Solving mazes with memristors: A massively parallel approach. Phys. Rev. E 84(4), 046703 (2011)

    Google Scholar 

  5. Cantley, K.D., Subramaniam, A., Stiegler, H., Chapman, R., Vogel, E.: Neural learning circuits utilizing nano-crystalline silicon transistors and memristors. IEEE Trans. Neural Networks Learning Syst. 23(4), 565–573 (2012)

    Article  Google Scholar 

  6. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor Bridge Synapses. Proceedings of the IEEE 100(6), 2061–2070 (2012)

    Article  Google Scholar 

  7. Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)

    Article  Google Scholar 

  8. Liu, L., Chen, B., Gao, B., Zhang, F., Chen, Y., Liu, X., Wang, Y., Han, R., Kang, J.: Engineering oxide resistive switching materials for memristivedevice application. Appl. Phys. A 102(4), 991–996 (2011)

    Google Scholar 

  9. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  10. Chabi, D., Klein, J.-O.: Hight fault tolerance in neural crossbar. In: 2010 5th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), March 23-25, pp. 1–6 (2010)

    Google Scholar 

  11. Querlioz, D., Zhao, W.S., Dollfus, P., Klein, J.-O., Bichler, O., Gamrat, C.: Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approaches. In: 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), July 4-6, pp. 203–210 (2012)

    Google Scholar 

  12. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  13. Pickett, M., Strukov, D.B., Borghetti, J., Yang, J., Snider, G., Stewart, D., Williams, R.S.: Switching dynamics in a titanium dioxide memristive device. J. of App. Phys. 106, art. 074508 (2009)

    Google Scholar 

  14. The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/

  15. Gray, D.T.: Optimization of the Process for Semiconductor Device Fabrication in the MicrON 636 Whittemore Cleanroom Facility. M.S. thesis, Materials Sc. Eng., Virginia Polytechnic Inst. and State Uni., Blacksburg, VA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starzyk, J.A., Basawaraj (2013). Comparison of Two Memristor Based Neural Network Learning Schemes for Crossbar Architecture. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics