Skip to main content

Self-regulating Neurons in the Sensorimotor Loop

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Included in the following conference series:

Abstract

Synaptic plasticity for recurrent neural networks is derived by introducing neurons as self-regulating units. These neurons have homeostatic properties for certain parameter domains. Depending on its underlying connectivity a neurocontroller endowed with the derived synaptic plasticity rule can generate a variety of different behaviors. The structure of these networks can be developed by evolutionary techniques. For demonstration, examples are given generating a walking behavior for a 3-joint single leg of a walking machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, G.W., Bezprozvanny, I.: Maintaining the stability of neural function: a homeostatic hypothesis. Annual Review Physiology 63, 847–869 (2001)

    Article  Google Scholar 

  2. Di Paolo, E.A.: Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In: Paris, J.-A., Meyer, A., Berthoz, D., Floreano, H. (eds.) From Animals to Animals, Proc. of the Sixth International Conference on the Simulation of Adaptive Behavior, SAB 2000, pp. 440–449. MIT Press (2000)

    Google Scholar 

  3. Hoinville, T., Tapia, C., Hénaff, P.: Flexible and Stable Pattern Generation by Evolving Constrained Plastic Neurocontrollers. Adaptive Behavior 19, 187–207 (2011)

    Article  Google Scholar 

  4. Hülse, M., Pasemann, F.: Dynamical neural schmitt trigger for robot control. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 783–788. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Rempis, C.W., Toutounji, H., Pasemann, F.: Controlling the Learning of Behaviors in the Sensorimotor Loop with Neuromodulators in Self-Monitoring Neural Networks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (to be published 2013)

    Google Scholar 

  6. Triesch, J.: Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation 19, 885–909 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Turrigiano, G.G.: The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 411–435 (2008)

    Article  Google Scholar 

  8. von Twickel, A., Pasemann, F.: Reflex-oscillations in evolved single leg neurocontrollers for walking machines. Natural Computing 6, 311–337 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. von Twickel, A., Hild, M., Siedel, T., Patel, V., Pasemann, F.: Neural control of a modular multi-legged walking machine: Simulation and hardware. Robotics and Autonomous Systems 60, 227–241 (2012)

    Article  Google Scholar 

  10. Vargas, P.A., Moioli, R.C., de Castro, L.N., Timmis, J., Neal, M., Von Zuben, F.J.: Artificial homeostatic system: a novel approach. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 754–764. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Williams, H., Noble, J.: Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks. Biosystems 87, 252–259 (2007)

    Article  Google Scholar 

  12. Zahedi, K., Pasemann, F.: Adaptive behavior control with self-regulating neurons. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of AI, Festschrift. LNCS (LNAI), vol. 4850, pp. 196–205. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pasemann, F. (2013). Self-regulating Neurons in the Sensorimotor Loop. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics