Skip to main content

Pulmonary Hypertension: Pathophysiology and Signaling Pathways

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

Pulmonary hypertension (PH) is characterized by pathological changes to cell signaling pathways within the alveolar-pulmonary arteriole–right ventricular axis that results in increases in pulmonary vascular resistance and, ultimately, the development of right ventricular (RV) dysfunction. Cornerstone histopathological features of the PH vasculopathy include intimal thickening, concentric hypertrophy, and perivascular fibrosis of distal pulmonary arterioles. The presence of plexogenic lesions is pathognomonic of pulmonary arterial hypertension (PAH); when present, this severe form of remodeling is associated with subtotal obliteration of the blood vessel lumen. The extent of RV remodeling in PH correlates with clinical symptom severity and portends a poor outcome. Currently available PH-specific pharmacotherapies that aim to improve symptom burden by targeting pulmonary vasodilatory/vasoconstrictor cell signaling pathways do not fully reverse pulmonary vascular remodeling and, thus, are largely unsuccessful at maintaining normal cardiopulmonary hemodynamics long term. Thus, determining the molecular mechanisms that are responsible for pulmonary vascular remodeling in PH is of great potential therapeutic value, particularly pathways that promote apoptosis-resistant cellular proliferation, disrupt normal cellular bioenergetics to alter cell function, and/or modulate severely abnormal responses to pulmonary vascular injury. This chapter reviews current insights into PH pathophysiology and disease mechanisms, and discusses novel cell signaling pathways that implicate microRNAs and mitochondrial dysfunction in the development of the PH phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    GAF is an acronym of the various tissues in which these domains were originally described: cGMP-dependent phosphodiesterases (PDEs), nabaena adenylyl cyclases, and E. coli FhlA (Francis et al. 2010).

Abbreviations

BH4 :

Tetrahydrobiopterin

BMP-RII:

Bone morphogenetic protein receptor II

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

COX:

Cyclooxygenase

EGFR:

Epidermal growth factor receptor

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

ETA :

Endothelin-type A receptor

ETB :

Endothelin-type B receptor

FeNO:

Iron-nitrosyl

GTP:

Guanosine triphosphate

HAPE:

High altitude pulmonary edema syndrome

HHT:

Hereditary hemorrhagic telangiectasia

HIF:

Hypoxia-inducible factor

HIV:

Human immunodeficiency virus

IL:

Interleukin

ISCU1/2:

Iron–sulfur cluster assembly proteins

KL:

Kruppel-like factor

LO:

Lipooxygenases

LV:

Left ventricle

MAPK:

Mitogen-activated protein kinase

miR:

MicroRNA

NO :

Nitric oxide

NOX:

NADPH oxidase

O2 :

Superoxide

O2NOO :

Peroxynitrate

ONOO :

Peroxynitrite

PAEC:

Pulmonary artery endothelial cells

PAH:

Pulmonary arterial hypertension

PDE:

Phosphodiesterase inhibitor

PDGF:

Platelet-derived growth factor

PDK:

Pyruvate dehydrogenase kinase

PG:

Prostaglandin

PH:

Pulmonary hypertension

PKG:

Protein kinase G

PPAR-γ:

Peroxisome proliferator-activated receptor

PSMC:

Pulmonary artery smooth muscle cells

PTPC:

Permeability transition pore complex

ROS:

Reactive oxygen species

RV:

Right ventricle

sGC:

Soluble guanylyl cyclase

SOD:

Superoxide dismutase

TAPSE:

Tricuspid annular plane systolic excursion

TGF:

Transforming growth factor

TXA2 :

Thromboxane

VEGF:

Vascular endothelial growth factor

References

  • Abe K, Toba M et al (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121(25):2747–2754

    Article  PubMed  Google Scholar 

  • Alastalo TP, Li M et al (2011) Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121(9):3735–3746

    Article  PubMed  CAS  Google Scholar 

  • An SJ, Boyd R et al (2007) NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts. Cardiovasc Res 75(4):702–709

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Wu XC et al (2004) O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem 385(3–4):205–216

    PubMed  CAS  Google Scholar 

  • Archer SL, Gomberg-Maitland M et al (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294(2):H570–H578

    Article  PubMed  CAS  Google Scholar 

  • Archer SL, Weir EK et al (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121(18):2045–2066

    Article  PubMed  Google Scholar 

  • Barst RJ, Rubin LJ (2011) Pulmonary hypertension. In: Fuster V, Walsh RA, Harrington RA (eds) Hurst’s the heart, 13th edn. McGraw-Hill, New York

    Google Scholar 

  • Benza RL, Miller DP et al (2010) Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122(2):164–172

    Article  PubMed  Google Scholar 

  • Berezikov E, Guryev V et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Michelakis ED et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641

    Article  PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Cerqueira FM, Brandizzi LI et al (2012) Serum from calorie-restricted rats activates vascular cell eNOS through enhanced insulin signaling mediated by adiponectin. PLoS One 7(2):e31155

    Article  PubMed  CAS  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9(6):1072–1083

    Article  PubMed  CAS  Google Scholar 

  • Chan MC, Nguyen PH et al (2007) A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol 27(16):5776–5789

    Article  PubMed  CAS  Google Scholar 

  • Chan SY, Zhang YY et al (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10(4):273–284

    Article  PubMed  CAS  Google Scholar 

  • Chin KM, Kingman M et al (2008) Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. Am J Cardiol 101(11):1669–1672

    Article  PubMed  Google Scholar 

  • Christman BW, McPherson CD et al (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327(2):70–75

    Article  PubMed  CAS  Google Scholar 

  • Clozel M, Maresta A, Humbert M (2013) Endothelin receptor antagonists. In: Humbert M, Evgenov OV, Stasch JP (eds) Pharmacotherapy of pulmonary hypertension. Springer, Heidelberg

    Google Scholar 

  • Coulet F, Nadaud S et al (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278(47):46230–46240

    Article  PubMed  CAS  Google Scholar 

  • Courboulin A, Paulin R et al (2011a) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208(3):535–548

    Article  PubMed  CAS  Google Scholar 

  • Courboulin A, Tremblay VL et al (2011b) Kruppel-like Factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 12:128

    Article  PubMed  CAS  Google Scholar 

  • D’Orleans-Juste P, Telemaque S et al (1991) Different pharmacological profiles of big-endothelin-3 and big-endothelin-1 in vivo and in vitro. Br J Pharmacol 104(2):440–444

    Article  PubMed  Google Scholar 

  • de Groote P, Millaire A et al (1998) Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 32(4):948–954

    Article  PubMed  Google Scholar 

  • Delker SL, Xue F et al (2010) Role of zinc in isoform-selective inhibitor binding to neuronal nitric oxide synthase. Biochemistry 49(51):10803–10810

    Article  PubMed  CAS  Google Scholar 

  • Doi T, Sugimoto H et al (1999) Interactions of endothelin receptor subtypes A and B with Gi, Go, and Gq in reconstituted phospholipid vesicles. Biochemistry 38(10):3090–3099

    Article  PubMed  CAS  Google Scholar 

  • Droma Y, Hanaoka M et al (2002) Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation 106(7):826–830

    Article  PubMed  CAS  Google Scholar 

  • Dudzinski DM, Igarashi J et al (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276

    Article  PubMed  CAS  Google Scholar 

  • Egom EE, Mohamed TM et al (2011) Activation of Pak1/Akt/eNOS signaling following sphingosine-1-phosphate release as part of a mechanism protecting cardiomyocytes against ischemic cell injury. Am J Physiol Heart Circ Physiol 301(4):H1487–H1495

    Article  PubMed  CAS  Google Scholar 

  • Evgenov OV, Pacher P et al (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5(9):755–768

    Article  PubMed  CAS  Google Scholar 

  • Fagan KA, Fouty BW et al (1999) The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 103(2):291–299

    Article  PubMed  CAS  Google Scholar 

  • Falcetti E, Hall SM et al (2010) Smooth muscle proliferation and role of the prostacyclin (IP) receptor in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 182(9):1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Fang YH, Piao L et al (2012) Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl) 90(1):31–43

    Article  CAS  Google Scholar 

  • Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351(16):1655–1665

    Article  PubMed  CAS  Google Scholar 

  • Fasanaro P, D’Alessandra Y et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283(23):15878–15883

    Article  PubMed  CAS  Google Scholar 

  • Fernhoff NB, Derbyshire ER et al (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci USA 106(51):21602–21607

    Article  PubMed  CAS  Google Scholar 

  • Fijalkowska I, Xu W et al (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176(3):1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Fish JE, Yan MS et al (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285(2):810–826

    Article  PubMed  CAS  Google Scholar 

  • Ford-Hutchinson AW, Bray MA et al (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286(5770):264–265

    Article  PubMed  CAS  Google Scholar 

  • Forfia PR, Fisher MR et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174(9):1034–1041

    Article  PubMed  Google Scholar 

  • Francis SH et al (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62(3):525–563

    Article  PubMed  CAS  Google Scholar 

  • Fredenburgh LE, Liang OD et al (2008) Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. Circulation 117(16):2114–2122

    Article  PubMed  CAS  Google Scholar 

  • Gangopahyay A, Oran M et al (2011) Bone morphogenetic protein receptor II is a novel mediator of endothelial nitric-oxide synthase activation. J Biol Chem 286(38):33134–33140

    Article  PubMed  CAS  Google Scholar 

  • Gautier M, Antier D et al (2007) Continuous inhalation of carbon monoxide induces right ventricle ischemia and dysfunction in rats with hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol 293(2):H1046–H1052

    Article  PubMed  CAS  Google Scholar 

  • Ghofrani HA, Hoeper MM et al (2010) Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur Respir J 36(4):792–799

    Article  PubMed  CAS  Google Scholar 

  • Ghosh G, Subramanian IV et al (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120(11):4141–4154

    Article  PubMed  CAS  Google Scholar 

  • Giaid A, Yanagisawa M et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328(24):1732–1739

    Article  PubMed  CAS  Google Scholar 

  • Gizi A, Papassotiriou I et al (2011) Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis 46(3):220–225

    Article  PubMed  CAS  Google Scholar 

  • Gladwin MT, Vichinsky E (2008) Pulmonary complications of sickle cell disease. N Engl J Med 359(21):2254–2265

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Qiu Z et al (2012) The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension 59(5):1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Hansmann G, Wagner RA et al (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115(10):1275–1284

    PubMed  CAS  Google Scholar 

  • Hassoun PM, Filippov G et al (2004) Hypoxia decreases expression of soluble guanylate cyclase in cultured rat pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 30(6):908–913

    Article  PubMed  CAS  Google Scholar 

  • Hinton M, Gutsol A et al (2007) Thromboxane hypersensitivity in hypoxic pulmonary artery myocytes: altered TP receptor localization and kinetics. Am J Physiol Lung Cell Mol Physiol 292(3):L654–L663

    Article  PubMed  CAS  Google Scholar 

  • Huggins JP, Pelton JT et al (1993) The structure and specificity of endothelin receptors: their importance in physiology and medicine. Pharmacol Ther 59(1):55–123

    Article  PubMed  CAS  Google Scholar 

  • Huh JW, Kim SY et al (2011) YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm Pharmacol Ther 24(6):638–646

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Eguchi S et al (1999) Endothelin-mediated vascular growth requires p42/p44 mitogen-activated protein kinase and p70 S6 kinase cascades via transactivation of epidermal growth factor receptor. Endocrinology 140(10):4659–4668

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Cheng Y et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100(11):1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Jones JE, Walker JL et al (2004) Effect of 5-lipoxygenase on the development of pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 286(5):H1775–H1784

    Article  PubMed  CAS  Google Scholar 

  • Kapakos G, Bouallegue A et al (2010) Modulatory role of nitric oxide/cGMP system in endothelin-1-induced signaling responses in vascular smooth muscle cells. Curr Cardiol Rev 6(4):247–254

    Article  PubMed  Google Scholar 

  • Kilroy G, Kirk-Ballard H et al (2012) The ubiquitin ligase Siah2 regulates PPARgamma activity in adipocytes. Endocrinology 153(3):1206–1218

    Article  PubMed  CAS  Google Scholar 

  • Ko FN, Wu CC et al (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84(12):4226–4233

    PubMed  CAS  Google Scholar 

  • Kourembanas S, McQuillan LP et al (1993) Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92(1):99–104

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  PubMed  CAS  Google Scholar 

  • Listi F, Caruso M et al (2008) Pro-inflammatory gene variants in myocardial infarction and longevity: implications for pharmacogenomics. Curr Pharm Des 14(26):2678–2685

    Article  PubMed  CAS  Google Scholar 

  • Liu XR, Zhang MF et al (2012) Enhanced store-operated Ca(2)+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 302(1):C77–C87

    Article  PubMed  CAS  Google Scholar 

  • Long L, Crosby A et al (2009) Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119(4):566–576

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E et al (2011) The nitrate-nitrite-nitric oxide pathway in mammals. In: Bryan NS, Loscalzo J (eds) Nitrite and nitrate in human health and disease. Humana, New York

    Google Scholar 

  • Machado RD, Aldred MA et al (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27(2):121–132

    Article  PubMed  CAS  Google Scholar 

  • Maron BA, Loscalzo J (2013) Pulmonary hypertension in non-pulmonary arterial hypertension patients. In: Creager MA, Beckman JA, Loscalzo J (eds) Vascular medicine: a companion to Braunwald's heart disease, 2nd edn. Elsevevier, Philadelphia, PA, pp 419–432

    Chapter  Google Scholar 

  • Maron BA, Zhang YY et al (2009) Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells. J Biol Chem 284(12):7665–7672

    Article  PubMed  CAS  Google Scholar 

  • Maron BA, Zhang YY et al (2012) Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 126(8):963–974

    Article  PubMed  CAS  Google Scholar 

  • McAllister-Lucas LM, Haik TL et al (1995) An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. J Biol Chem 270(51):30671–30679

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Alp NJ et al (2004) Functional comparison of the endothelial nitric oxide synthase Glu298Asp polymorphic variants in human endothelial cells. Pharmacogenetics 14(12):831–839

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin VV, Archer SL et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53(17):1573–1619

    Article  PubMed  Google Scholar 

  • McMahon TJ, Ahearn GS et al (2005) A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Natl Acad Sci USA 102(41):14801–14806

    Article  PubMed  CAS  Google Scholar 

  • Merklinger SL, Jones PL et al (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112(3):423–431

    Article  PubMed  CAS  Google Scholar 

  • Michelakis ED, Wilkins MR et al (2008) Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation 118(14):1486–1495

    Article  PubMed  Google Scholar 

  • Mittal M, Gu XQ et al (2012) Hypoxia induces K(v) channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 52(6):1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Saito Y et al (1998) Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 32(1):3–8

    Article  PubMed  CAS  Google Scholar 

  • Mossalam M, Matissek KJ et al (2012) Direct induction of apoptosis using an optimal mitochondrially targeted P53. Mol Pharm 9(5):1449–1458

    PubMed  CAS  Google Scholar 

  • Murata T, Sato K et al (2002) Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol Chem 277(46):44085–44092

    Article  PubMed  CAS  Google Scholar 

  • Nagendran J, Archer SL et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3):238–248

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Okada Y et al (2004) Role of endothelin ETB receptor in the pathogenesis of monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol 496(1–3):159–165

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Vaszar LT et al (2003) Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 108(13):1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Oikawa M, Kagaya Y et al (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45(11):1849–1855

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Ninomiya H et al (1997) Palmitoylation of human endothelinB. Its critical role in G protein coupling and a differential requirement for the cytoplasmic tail by G protein subtypes. J Biol Chem 272(34):21589–21596

    Article  PubMed  CAS  Google Scholar 

  • Olave N, Nicola T et al (2012) Transforming growth factor-beta regulates endothelin-1 signaling in the newborn mouse lung during hypoxia exposure. Am J Physiol Lung Cell Mol Physiol 302(9):L857–L865

    Article  PubMed  CAS  Google Scholar 

  • Olschewski H (2013) Prostacyclins. In: Humbert M, Evgenov OV, Stasch JP (eds) Pharmacotherapy of pulmonary hypertension. Springer, Heidelberg

    Google Scholar 

  • Parikh VN, Jin RC et al (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125(12):1520–1532

    Article  PubMed  CAS  Google Scholar 

  • Pellicena P, Karow DS et al (2004) Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc Natl Acad Sci USA 101(35):12854–12859

    Article  PubMed  CAS  Google Scholar 

  • Piao L, Fang YH et al (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl) 88(1):47–60

    Article  CAS  Google Scholar 

  • Porter TD, Beck TW et al (1990) NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry 29(42):9814–9818

    Article  PubMed  CAS  Google Scholar 

  • Pullamsetti SS, Doebele C et al (2011) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185(4):409–419

    Article  PubMed  CAS  Google Scholar 

  • Puwanant S, Park M et al (2010) Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 121(2):259–266

    Article  PubMed  Google Scholar 

  • Racz A, Veresh Z et al (2010) Cyclooxygenase-2 derived thromboxane A(2) and reactive oxygen species mediate flow-induced constrictions of venules in hyperhomocysteinemia. Atherosclerosis 208(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Randle PJ, Garland PB et al (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789

    Article  PubMed  CAS  Google Scholar 

  • Recchia AG, Filice E et al (2009) Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes. J Mol Cell Cardiol 46(3):352–359

    Article  PubMed  CAS  Google Scholar 

  • Reeve HL, Michelakis E et al (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 90(6):2249–2256

    PubMed  CAS  Google Scholar 

  • Rondelet B, Dewachter L et al (2010) Sildenafil added to sitaxsentan in overcirculation-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 299(4):H1118–H1123

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig BL, Imamura T et al (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 92(17):7632–7636

    Article  PubMed  CAS  Google Scholar 

  • Rothman A, Wolner B et al (1994) Immediate-early gene expression in response to hypertrophic and proliferative stimuli in pulmonary arterial smooth muscle cells. J Biol Chem 269(9):6399–6404

    PubMed  CAS  Google Scholar 

  • Schmidt P, Schramm M et al (2003) Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur J Pharmacol 468(3):167–174

    Article  PubMed  CAS  Google Scholar 

  • Schneider MP, Boesen EI et al (2007) Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47:731–759

    Article  PubMed  CAS  Google Scholar 

  • Serre V, Ildefonse M et al (1995) Effects of cysteine modification on the activity of the cGMP-gated channel from retinal rods. J Membr Biol 146(2):145–162

    PubMed  CAS  Google Scholar 

  • Seta F, Rahmani M et al (2011) Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One 6(8):e23439

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Jones JE et al (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112(4):553–562

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Coleman L et al (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295(2):H677–H690

    Article  PubMed  CAS  Google Scholar 

  • Spiegelhalder B, Eisenbrand G et al (1976) Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14(6):545–548

    Article  PubMed  CAS  Google Scholar 

  • Stasch JP, Schmidt PM et al (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116(9):2552–2561

    Article  PubMed  CAS  Google Scholar 

  • Steudel W, Scherrer-Crosbie M et al (1998) Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest 101(11):2468–2477

    Article  PubMed  CAS  Google Scholar 

  • Suntharalingam J, Hughes RJ et al (2007) Acute haemodynamic responses to inhaled nitric oxide and intravenous sildenafil in distal chronic thromboembolic pulmonary hypertension (CTEPH). Vascul Pharmacol 46(6):449–455

    Article  PubMed  CAS  Google Scholar 

  • Tang JR, Markham NE et al (2004) Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am J Physiol Lung Cell Mol Physiol 287(2):L344–L351

    Article  PubMed  CAS  Google Scholar 

  • Toporsian M, Jerkic M et al (2010) Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia. Arterioscler Thromb Vasc Biol 30(3):509–517

    Article  PubMed  CAS  Google Scholar 

  • Topper JN, Cai J et al (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 93(19):10417–10422

    Article  PubMed  CAS  Google Scholar 

  • Tuder RM, Cool CD et al (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159(6):1925–1932

    Article  PubMed  CAS  Google Scholar 

  • Turko IV, Francis SH et al (1999) Studies of the molecular mechanism of discrimination between cGMP and cAMP in the allosteric sites of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J Biol Chem 274(41):29038–29041

    Article  PubMed  CAS  Google Scholar 

  • Umar S, Lee JH et al (2012) Spontaneous ventricular fibrillation in right ventricular failure secondary to chronic pulmonary hypertension. Circ Arrhythm Electrophysiol 5(1):181–190

    Article  PubMed  Google Scholar 

  • Vermeersch P, Buys E et al (2007) Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia. Circulation 116(8):936–943

    Article  PubMed  CAS  Google Scholar 

  • Voelkel NF, Tuder RM et al (1996) Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest 97(11):2491–2498

    Article  PubMed  CAS  Google Scholar 

  • Voelkel NF, Quaife RA et al (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17):1883–1891

    Article  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  • Waxman AB (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target for therapy? Circulation 124(2):133–135

    Article  PubMed  Google Scholar 

  • Wharton J, Strange JW et al (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172(1):105–113

    Article  PubMed  Google Scholar 

  • Woodfield K, Ruck A et al (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336(Pt 2):287–290

    PubMed  CAS  Google Scholar 

  • Yamashita K, Discher DJ et al (2001) Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J Biol Chem 276(16):12645–12653

    Article  PubMed  CAS  Google Scholar 

  • Yeager ME, Belchenko DD et al (2012) Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 46(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Yoo BK, Lamarre I et al (2012) Quaternary structure controls ligand dynamics in soluble guanylate cyclase. J Biol Chem 287(9):6851–6859

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2(1):67–71

    Article  PubMed  CAS  Google Scholar 

  • Zaugg CE, Hornstein PS et al (1996) Endothelin-1-induced release of thromboxane A2 increases the vasoconstrictor effect of endothelin-1 in postischemic reperfused rat hearts. Circulation 94(4):742–747

    Article  PubMed  CAS  Google Scholar 

  • Zhang WM, Yip KP et al (2003) ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol 285(3):L680–L690

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Loscalzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maron, B.A., Loscalzo, J. (2013). Pulmonary Hypertension: Pathophysiology and Signaling Pathways. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_2

Download citation

Publish with us

Policies and ethics