Skip to main content

Polyhydroxyalkanoates-Based Nanocomposites: An Efficient and Promising Way of Finely Controlling Functional Material Properties

  • Chapter
  • First Online:
Handbook of Polymernanocomposites. Processing, Performance and Application

Abstract

This chapter aims at highlighting on recent advances in preparation, characterization, and functional properties of polyhydroxyalkanoates (PHA) and their layered silicate nanocomposites. These materials have attracted considerable interest in material science research. PHA are microbial polyesters produced by numerous bacteria in nature as intracellular reserve of carbon or energy. They are also generally biodegradable, with good biocompatibility, making them attractive as biomaterials. Nevertheless, biodegradable polymers alone as PHA have limited physical and mechanical properties which, at present, do not allow them to fully replace the mainstream plastics. The preparation of bionanocomposites defined as a combination between PHA and inorganic nanofillers as layered silicates is a route to enhance some of the biodegradable PHA properties. Preparative techniques include essentially intercalation of PHA in solution and melt intercalation.

This critical review highlights the major developments in this area during the last decade and focuses on the control of the functional PHA properties using layered silicate as mechanical behavior, thermal stability, gas barrier properties, and biodegradability. This review also points out some contradictory trends, which result from combined and antagonist effects. This proves that the PHA-based nanocomposite morphologies should be comprehensively investigated for predicting and interpreting the complex phenomena which can take place in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha Ray S, Bosmina M (2005) Prog Mater Sci 50:962

    Article  Google Scholar 

  2. Darder M, Aranda P, Ruiz-Hitzk E (2007) Adv Mater 19:1309

    Article  CAS  Google Scholar 

  3. Bordes P, Pollet E, Averous L (2009) Prog Polym Sci 34:125

    Article  CAS  Google Scholar 

  4. Alexandre M, Dubois P (2000) Mater Sci Eng R 28:1

    Article  Google Scholar 

  5. Sinha Ray S, Okamoto M (2003) Prog Polym Sci 28:1539

    Article  Google Scholar 

  6. Paul DR, Robeson LM (2008) Polymer 49:3187

    Article  CAS  Google Scholar 

  7. Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119

    Article  CAS  Google Scholar 

  8. Bruzaud S, Bourmaud A (2007) Polym Test 26:652

    Article  CAS  Google Scholar 

  9. Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503

    Article  CAS  Google Scholar 

  10. Khanna S, Srivastava AK (2005) Proc Biochem 40:607

    Article  CAS  Google Scholar 

  11. Vroman I, Tighzert L (2009) Materials 2:307

    Article  CAS  Google Scholar 

  12. Chanprateep S (2010) J Biosci Bioeng 110:621

    Article  CAS  Google Scholar 

  13. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Mater Sci Eng 72:29

    Article  Google Scholar 

  14. Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Polym Degrad Stab 93:17

    Article  CAS  Google Scholar 

  15. Chen GQ, Wu Q (2005) Biomaterials 26:6565

    Article  CAS  Google Scholar 

  16. Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732

    Article  CAS  Google Scholar 

  17. Philip S, Kershavarz T, Roy I (2007) J Chem Technol Biotechnol 82:233

    Article  CAS  Google Scholar 

  18. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Biomacromolecules 6:580

    Article  CAS  Google Scholar 

  19. Corre YM, Bruzaud S, Audic JL, Grohens Y (2012) Polym Test 31:226

    Article  CAS  Google Scholar 

  20. Dufresne A, Samain E (1998) Macromolecules 31:6426

    Article  CAS  Google Scholar 

  21. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 1:276–277

    Google Scholar 

  22. Amgoune A, Thomas CM, Ilinca S, Roisnel T, Carpentier JF (2006) Angew Chem Int Ed 118:2848

    Article  Google Scholar 

  23. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) J Nanosci Nanotechnol 5:497

    Article  CAS  Google Scholar 

  24. Maiti P, Batt CA, Giannelis EP (2007) Biomacromolecules 8:3393

    Article  CAS  Google Scholar 

  25. Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87

    Article  CAS  Google Scholar 

  26. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci Part A Polym Chem 31:1755

    Article  CAS  Google Scholar 

  27. Lee DC, Jang LW (1996) J Appl Polym Sci 61:1117

    Article  CAS  Google Scholar 

  28. Chardron S, Bruzaud S, Lignot B, Elain A, Sire O (2010) Polym Test 29:966

    Article  CAS  Google Scholar 

  29. Chen GX, Hao GJ, Guo TY, Song MD, Zhang BH (2002) J Mater Sci Lett 21:1587

    Article  CAS  Google Scholar 

  30. Choi WM, Kim TW, Park OO, Chang YK, Lee JW (2003) J Appl Polym Sci 90:525

    Article  CAS  Google Scholar 

  31. Carrasco F, Dionisi D, Martinelli M, Majone M (2006) J Appl Polym Sci 100:2111

    Article  CAS  Google Scholar 

  32. Zhang X, Lin G, Abou-Hussein R, Hassan MK, Noda I, Mark JE (2007) Eur Polym J 43:3128

    Article  CAS  Google Scholar 

  33. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002) Nano Lett 2:1093

    Article  Google Scholar 

  34. Hablot E, Bordes P, Pollet E, Avérous L (2008) Polym Degrad Stab 93:413

    Article  CAS  Google Scholar 

  35. Bordes P, Hablot E, Pollet E, Avérous L (2009) Polym Degrad Stab 94:789

    Article  CAS  Google Scholar 

  36. Lim ST, Hyun YH, Lee CH, Choi HJ (2003) J Mater Sci Lett 22:299

    Article  CAS  Google Scholar 

  37. Nielsen L (1967) J Macromol Sci Chem A1(5):929

    Article  Google Scholar 

  38. Bharadwaj RK (2001) Macromolecules 34:9189

    Article  CAS  Google Scholar 

  39. Gusev AA, Lusti HR (2001) Adv Mater 13:1641

    Article  CAS  Google Scholar 

  40. Corrêa MCS, Branciforti MC, Pollet E, Agnelli JAM, Nascente PAP, Avérous L (2012) J Polym Env. doi:10.1007/s10924-011-0379-0

    Google Scholar 

  41. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) J Appl Polym Sci 108:2787

    Article  CAS  Google Scholar 

  42. Kumar AP, Depan D, Tomer NS, Singh RP (2009) Prog Polym Sci 34:479

    Article  CAS  Google Scholar 

  43. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) Polym Degrad Stab 88:234

    Article  CAS  Google Scholar 

  44. Maiti P, Batt CA, Giannelis EP (2003) Polym Mater Sci Eng 88:58

    CAS  Google Scholar 

  45. Sinha Ray S, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) Polymer 44:6633

    Article  CAS  Google Scholar 

  46. Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, Takeuchi S (2005) Polym Degrad Stab 87:69

    Article  CAS  Google Scholar 

  47. Lee SR, Park HM, Lim H, Kang T, Li X, Cho WJ (2002) Polymer 43:2495

    Article  CAS  Google Scholar 

  48. Song CJ, Wang SF, Ono S, Shimasaki C, Inoue M (2001) Soil Sci Plant Nutr 48:159

    Article  Google Scholar 

  49. Ishida K, Asakawa N, Inoue Y (2005) Macromol Symp 224:47

    Article  CAS  Google Scholar 

  50. Lee SK, Seong DG, Youn JR (2005) Fib Polym 6:289

    Article  CAS  Google Scholar 

  51. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) Chem Mater 15:1456

    Article  Google Scholar 

  52. Bruzaud S, Grohens Y (2008) Int J Nanotechnol 5:660

    Article  CAS  Google Scholar 

  53. Chang JH, An YU, Cho D, Giannelis EP (2003) Polymer 44:3715

    Article  CAS  Google Scholar 

  54. Sinha Ray S, Okamoto M (2003) Macromol Rapid Commun 24:815

    Article  Google Scholar 

  55. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) Comp Int 10:435

    Google Scholar 

  56. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003) J Nanosci Nanotechnol 3:503

    Article  Google Scholar 

Download references

Acknowledgements

The author express their sincere thanks to J.K. Pandey, K.R. Reddy, A.K. Mohanty, and M. Misra, the editors of this book, for their kind invitation for this contribution. Grateful appreciation is also extended to all my collaborators for their continuous help in this field (Dr. A. Bourmaud, Dr. S. Chardron, Dr. Y.M. Corre, Dr. I. Pillin and F. Peresse) and especially Dr. M. Castro for his help in the redaction of this review and Pr. Y. Grohens, director of LIMATB, for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Bruzaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruzaud, S. (2014). Polyhydroxyalkanoates-Based Nanocomposites: An Efficient and Promising Way of Finely Controlling Functional Material Properties. In: Pandey, J., Reddy, K., Mohanty, A., Misra, M. (eds) Handbook of Polymernanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38649-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38649-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38648-0

  • Online ISBN: 978-3-642-38649-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics