Skip to main content

Cochlear Implant: Transcutaneous Transmission Link with OFDM

  • Conference paper
Book cover Natural and Artificial Models in Computation and Biology (IWINAC 2013)

Abstract

This paper presents the use of the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique in the design and simulation of a telemetry system for a cochlear implant. Data were processed through the Simulink module of MATLABTM. High transmission speed and high spectral efficiency were achieved with this design and simulation. Two types of OFDM were studied and compared regarding spectral efficiency and noise immunity, and the superiority of OFDM modulation using the QAM (Quadrature Amplitude Modulation) method was shown over OFDM, which uses the DQPSK (Differential Quadrature Phase Shift Keying) modulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mai, S., Zhang, C., Dong, M., Wang, Z.: A cochlear system with implant DSP. In: IEEE International Conference on Acoustis, Speech and Signal Processing V, pp. 125–128 (2006)

    Google Scholar 

  2. Wilson, B.S.: Engineering Design of Cochlear Implants. In: Zeng, F.G., Popper, A.N., Fay, R.R. (eds.) Cochlear Implants. Auditory Prostheses and Electric Hearing. Springer (2004)

    Google Scholar 

  3. Bhoir, D.V., Panse, M.: Advances in Cochlear Implant Implementation. International Journal of Recent Trends in Engineering 2(8), 57–59 (2009)

    Google Scholar 

  4. Naghmouchi, F., Ghorbel, M., Hamida, A.B., Samet, M.: CMOS ASK System Modulation Dedicated to Cochlear Prothesis. In: IEEE First International Sysmposium on Control, Communications and Signal Processing, pp. 267–270 (2004)

    Google Scholar 

  5. Zeng, F.G., Rebscher, S., Harrison, W., Sun, X., Feng, H.: Cochlear Implants: System Design, Integration, and Evaluation. IEEE Reviews in Biomedical Engineering 1, 115–142 (2008)

    Article  Google Scholar 

  6. Sawan, M., Hu, Y., Coulombe, J.: Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation. IEEE Circuits & Systems Magazine 5, 21–39 (2005)

    Article  Google Scholar 

  7. Tang, Z., Smith, B., Schild, J.H., Peckham, P.H.: Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Transactions on Biomedical Engineering 42(5), 524–528 (1995)

    Article  Google Scholar 

  8. Ghovanloo, M., Najafi, K.: A Wideband Frequency-Shift Keying Wireless Link for Inductively Powered Biomedical Implants. IEEE Trans. Circuits and Systems I 51(12), 2374–2383 (2004)

    Article  Google Scholar 

  9. Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Cochlear Stimulator: Evaluation and Emulation Platform (2008)

    Google Scholar 

  10. Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., Najafi, K.: Wireless Implantable Microsystems: High-Density Electronic Interfaces to the Nervous System. In: Proceedings of the IEEE, vol. 92, pp. 76–97 (2004)

    Google Scholar 

  11. Yu, H., Najafi, K.: Low-power interface circuits for bio-implantable microsystems, Technical Digest. In: IEEE Int. Conf. Solid-State Circuits, San Francisco CA (2003)

    Google Scholar 

  12. Ghovanloo, M., Najafi, K.: A high-rate frequency shift keying demodulator chip for wireless biomedical implants. In: Proceedings of ISCAS 2003, vol. 5, pp. 45–48 (2003)

    Google Scholar 

  13. Hu, Y., Sawan, M.: A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans. Circ. Syst. 52, 2552–2562 (2005)

    Article  Google Scholar 

  14. Hannan, M.A., Abbas, S.M., Samad, S.A., Hussain, A.: Modulation Techniques for Biomedical Implanted Devices and Their Challenges. Sensors 12, 297–319 (2012)

    Article  Google Scholar 

  15. Luo, Z., Sonkusale, S.: A Novel BPSK Demodulator for Biological Implants. IEEE Trans. Circuits and Systems-I: Regular Papers 55(6), 1478–1484 (2008)

    Article  MathSciNet  Google Scholar 

  16. Deng, S., Hu, Y., Sawan, M.: A High Data Rate QPSK Demodulator for Inductively Powered Electronics Implants. In: IEEE International Symposium on Circuits and Systems, pp. 2577–2580 (2006)

    Google Scholar 

  17. Kiourti, A., Demosthenous, A.: BER Performance of a BPSK Biomedical Telemetry System under Varying Coupling and Loading Conditions. In: Lin, J. (ed.) MobiHealth 2010. LNICST, vol. 55, pp. 144–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Asgarian, F., Sodagar, A.M.: A Low-Power Noncoherent BPSK Demodulator and Clock Recovery Circuit for High-Data-Rate Biomedical Applications. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4840–4843 (2009)

    Google Scholar 

  19. Sonkusale, S., Luo, Z.: A Complete Data and Power Telemetry System Utilizing BPSK and LSK Signaling for Biomedical Implants. In: 30th Annual International IEEE EMBS Conference, pp. 3216–3219 (2008)

    Google Scholar 

  20. Ackermann, D.M.: High Speed Transcutaneous Optical Telemetry Link. Case Western Reserve University (2007)

    Google Scholar 

  21. Neihart, N.M., Harrison, R.R.: A low-power FM transmitter for use in neural recording applications. In: Proc. IEEE Engineering in Medicine and Biology Conf., pp. 2117–2120 (2004)

    Google Scholar 

  22. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, Inc., New York (2000)

    Google Scholar 

  23. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach, 5th edn. The Morgan Kaufmann Series in Networking (2011)

    Google Scholar 

  24. Cimini, L.J.: Analysis and Simulation of a Digital Mobile Channel using Orthogonal Frecuency Divison Multiplexing. IEEE Transactions on Communications 33(7), 665–675 (1985)

    Article  Google Scholar 

  25. Speth, M., Fechtel, S.A., Fock, G., Meyr, H.: Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM. IEEE Transactions on Communications 47(11) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcerán-Hernández, V., Martínez-Rams, E.A. (2013). Cochlear Implant: Transcutaneous Transmission Link with OFDM. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38637-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38636-7

  • Online ISBN: 978-3-642-38637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics