Skip to main content

Modeling the Effect of Fixational Eye Movements in Natural Scenes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7930))

Abstract

Our eyes never remain still. Even when we stare at a point, small involuntary movements move our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with or without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasability of these models to be incorporated in future neuroprosthesis. For this purpose each retina model have been stimulated with the same natural scene sequence of images. Results are discussed from the point of view of a neuroprosthesis development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5, 229–240 (2004)

    Article  Google Scholar 

  2. Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)

    Google Scholar 

  3. Ratliff, F., Riggs, L.A.: A involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40, 687–701 (1950)

    Article  Google Scholar 

  4. Ditchburn, R.W.: The function of small saccades. Vision Res. 20, 271–272 (1980)

    Article  Google Scholar 

  5. Gerrits, H.J., Vendrik, A.J.: Artificial movements of a stabilized image. Vision Research 10, 1443–1456 (1970)

    Article  Google Scholar 

  6. Krauskopf, J.: Effect of retinal image motion on contrast thresholds for maintained vision. Journal of the Optical Society of America 47, 740–744 (1957)

    Article  Google Scholar 

  7. Sharpe, C.R.: The visibility and fading of thin lines visualized by their controlled movement across the retina. Journal of Physiology 222, 113–134 (1972)

    Google Scholar 

  8. Steinman, R.M., Cunitz, R.J., Timberlake, G.T., Herman, M.: Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967)

    Article  Google Scholar 

  9. Zuber, B.L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology 16, 65–79 (1966)

    Article  Google Scholar 

  10. Riggs, L.A., Ratliff, F.: The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America 42, 872–873 (1952)

    Google Scholar 

  11. Ditchburn, R.W., Fender, D.H., Mayne, S.: Vision with controlled movements of the retinal image. J. Physiol. 145(1), 98–107 (1959)

    Google Scholar 

  12. Nachmias, J.: Determiners of the Drift of the Eye during Monocular Fixation. J. Opt. Soc. Am. 51, 761–766 (1961)

    Article  Google Scholar 

  13. Greschner, M., Bongard, M., Rujan, P., Ammermüeller, J.: Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nature Neuroscience 5, 341–347 (2002)

    Article  Google Scholar 

  14. Donner, K., Hemila, S.: Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research 47(9), 1166–1177 (2007) ISSN 0042-6989, 10.1016/j.visres.2006.11.024

    Google Scholar 

  15. Martínez, A., Reyneri, L.M., Pelayo, F.J., Romero, S.F., Morillas, C.A., Pino, B.: Automatic Generation of Bio-inspired Retina-Like Processing Hardware. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 527–533. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Wohrer, A., Kornprobst, P.: Virtual Retina: A biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26, 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  17. Bongard, M., Ferrandez, J.M., Fernandez, E.: The neural concert of vision. Neurocomputing 72, 814–819 (2009)

    Article  Google Scholar 

  18. Martìnez-Álvarez, A., Olmedo-Payá, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: RetinaStudio: A bioinspired framework to encode visual information. Neurocomputing (2012) ISSN 0925–2312, 10.1016/j.neucom.2012.07.035

    Google Scholar 

  19. Ferrández, J.M., Bongard, M., García de Quirós, F., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: Decoding the Population Responses of Retinal Ganglions Cells Using Information Theory. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 55–62. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Normann, R., Maynard, E.M., Rousche, P., Warren, D.: A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999)

    Article  Google Scholar 

  21. Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Fernández, E.: A Computational Tool to Test Neuromorphic Encoding Schemes for Visual Neuroprostheses. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 510–517. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Gerstner, W., Kistler, W.: Spiking Neuron Modelssingle Neurons, Populations, Plasticity, pp. 93–97. Cambridge University Press (2002)

    Google Scholar 

  23. Gauthier, J.L., Field, G.D., Sher, A., Greschner, M., Shlens, J., Litke, A.M., Chichilnisky, E.J.: Receptive Fields in Primate Retina are Coordinated to Sample Visual Space More Uniformly. PLoS Biol. 7(4), 1000063 (2009), doi:10.1371/journal.pbio.1000063

    Article  Google Scholar 

  24. Carpenter, R.H.S.: Movements of the Eyes. Journal of Modern Optics 36(9), 1273–1276 (1989)

    MathSciNet  Google Scholar 

  25. Stacy, E.W.: A Generalization of the Gamma Distribution. Ann. Math. Statist. 33(3), 1187–1192 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pritchard, R.M.: Stabilized images on the retina. Sci. Am. 204, 72–78 (1961)

    Article  Google Scholar 

  27. Straw, A.D.: Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation. Front Neuroinformatics 2(4) (2008), doi:10.3389/neuro.11.004.2008

    Google Scholar 

  28. NEV 2.0 (Neural Event Format) format specification http://cyberkineticsinc.com/NEVspc20.pdf

  29. NeurALC., http://neuralc.sourceforge.net

  30. Mancuso, M., Poiuzzi, R., Rizzotto, G.G.: A fuzzy filter for dynamic range reduction and contrast enhancement. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, vol. 1, pp. 264a, 265–267 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olmedo-Payá, A., Martínez-Álvarez, A., Cuenca-Asensi, S., Ferrández-Vicente, J.M., Fernández, E. (2013). Modeling the Effect of Fixational Eye Movements in Natural Scenes. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38637-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38636-7

  • Online ISBN: 978-3-642-38637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics