Advertisement

Identity-Based Dynamic Authenticated Group Key Agreement Protocol for Space Information Network

  • Chao Wang
  • Kefei Mao
  • Jianwei Liu
  • Jianhua Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7873)

Abstract

A novel identity-based authenticated group key agreement (ID-AGKA) protocol is proposed to implement secure group communication in space information network. Cluster-based hierarchical mechanism is applied to generate group session key through the intra-cluster phase, inter-cluster phase and key distribution phase. Not only is the cost of establishment and management in public key infrastructure reduced, but also the dynamic situations that satellite node joins or exits the group are supported in the proposed protocol. Authentication, forward and backward secrecy and semantic security are proved under difficult mathematical problem assumptions. Compared with the previous ID-AGKA protocols, the proposed protocol has lower computation complexity and communication cost, and achieves optimal overall performance for space information network.

Keywords

space information network group key agreement forward and backward secrecy semantic security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Kim, Y., Perrig, A., Tsudik, G.: Group key agreement efficient in communication. IEEE Transactions on Computers 53(7), 905–921 (2004)CrossRefGoogle Scholar
  3. 3.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)CrossRefGoogle Scholar
  4. 4.
    Tsai, J.L.: A novel authenticated group key agreement protocol for mobile environment. Ann. Telecommun. 66(11), 663–669 (2011)CrossRefGoogle Scholar
  5. 5.
    You, Z.Y., Xie, X.Y.: A novel group key agreement protocol for wireless mesh network. Computers and Electrical Engineering 37(2), 218–239 (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Park, C., Hur, J., Hwang, S., Yoon, H.: Authenticated public key broadcast encryption scheme secure against insiders’ attack. Mathematical and Computer Modelling 55(2), 113–122 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Xiong, H., Chen, Z., Qin, Z.G.: Efficient three-party authenticated key agreement protocol in certificateless cryptography. International Journal of Computer Mathematics 88(13), 2707–2716 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hlbl, M., Welzer, T., Brumen, B.: An improved two-party identity-based authenticated key agreement protocol using pairings. Journal of Computer and System Sciences 78(1), 142–150 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cheng, Q.F., Ma, C.G., Wei, F.S.: Analysis and improvement of a new authenticated group key agreement in a mobile environment. Ann. Telecommun. 66, 331–337 (2011)CrossRefGoogle Scholar
  10. 10.
    Tan, Z.W.: Efficient identity-based authenticated multiple key exchange protocol. Computers and Electrical Engineering 37, 191–198 (2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chuang, Y.H., Tseng, Y.M.: An efficient dynamic group key agreement protocol for imbalanced wireless networks. Int. J. Network Mgmt. 20(4), 167–180 (2010)Google Scholar
  12. 12.
    Zhao, X.W., Zhang, F.G., Tian, H.B.: Dynamic asymmetric group key agreement for ad hoc networks. Ad Hoc Networks 9(5), 928–939 (2011)CrossRefGoogle Scholar
  13. 13.
    Sood, S.K., Sarje, A.K., Singh, K.: A secure dynamic identity based authentication protocol for multi-server architecture. Journal of Network and Computer Applications 34(2), 609–618 (2011)CrossRefGoogle Scholar
  14. 14.
    Guo, H., Li, Z.J., Mu, Y., Zhang, F.: An efficient dynamic authenticated key exchange protocol with selectable identities. Computers and Mathematics with Applications 61(9), 2518–2527 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wang, K., Zhao, Z.W., Yao, L.: An agile reconfigurable key distribution scheme in space information network. In: Proceedings of Second IEEE Conference on Industrial Electronics and Applications, Harbin, China, pp. 2742–2747 (2007)Google Scholar
  16. 16.
    Zhong, Y.T., Ma, J.F.: Efficient secure group key exchange protocol in space information networks. Journal of Jilin University (Engineering and Technology Edition) 42(1), 203–206 (2012)MathSciNetGoogle Scholar
  17. 17.
    Guo, Y.B., Wang, C., Wang, L.M.: Universally composable authentication and key exchange protocol for access control in spatial information networks. Acta Electronica Sinica 38(10), 2358–2364 (2010)Google Scholar
  18. 18.
    Cao, S., Zhang, C.R., Song, C.Y.: Identity-base dynamic authenticated group key agreement protocol for mobile networks. Journal of Air Force Engineering University (Natural Science Edition) 12(5), 67–71 (2011)Google Scholar
  19. 19.
    Choi, K.Y., Hwang, J.Y., Lee, D.-H.: Efficient ID-based group key agreement with bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 130–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Du, X., Wang, Y., Ge, J., Wang, Y.: ID-based authenticated two Round multi-party key agreement. Cryptology ePrint Archive: Report 2003/247Google Scholar
  21. 21.
    Lin, C.H., Lin, H.H., Chang, J.H.: Multiparty key agreement for secure teleconferencing. In: IEEE International Conference on Systems, Man and Cybernetics, ICSMC 2006, pp. 3702–3707 (2006)Google Scholar
  22. 22.
    Tang, H., Zhu, L., Zhang, Z.: Efficient ID-based two round authenticated group key agreement protocol. In: WiCOM 2008: 4th International Conference on Wireless Communication, Networking and Mobile Computering, pp. 1–4. IEEE press, New York (2008)CrossRefGoogle Scholar
  23. 23.
    Li, L.C., Tsai, Y.P., Liu, R.S.: A Novel ID-based authenticated group key agreement protocol using bilinear pairings. In: WOCN 2008: 5th IEEE and IFIP International Conference on Wireless and Optical Communications Networks (2008)Google Scholar
  24. 24.
    Barua, R., Dutta, R., Sarkar, P.: Extending joux’s protocol to multi party key agreement. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 205–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Zhang, F.G., Chen, X.F.: Attack on two ID-based authenticated group key agreement schemes. Cryptology ePrint Archive: Report 2003/259 (2003)Google Scholar
  27. 27.
    Shim, K.A.: Further analysis of ID-based authenticated group key agreement protocl from bilinear maps. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences 90(1), 288–295 (2007)Google Scholar
  28. 28.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chao Wang
    • 1
    • 2
  • Kefei Mao
    • 1
  • Jianwei Liu
    • 1
  • Jianhua Liu
    • 1
  1. 1.School of Electronics and Information EngineeringBeihang UniversityBeijingChina
  2. 2.Department of PLA Air ForceChina

Personalised recommendations