Privacy-Preserving Multi-party Reconciliation Using Fully Homomorphic Encryption

  • Florian Weingarten
  • Georg Neugebauer
  • Ulrike Meyer
  • Susanne Wetzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7873)


Fully homomorphic cryptosystems allow the evaluation of arbitrary Boolean circuits on encrypted inputs and therefore have very important applications in the area of secure multi-party computation. Since every computable function can be expressed as a Boolean circuit, it is theoretically clear how to achieve function evaluation on encrypted inputs. However, the transformation to Boolean circuits is not trivial in practice. In this work, we design such a transformation for certain functions, i.e., we propose algorithms and protocols which make use of fully homomorphic encryption in order to achieve privacy-preserving multi-party reconciliation on ordered sets. Assuming a sufficiently efficient encryption scheme, our solution performs much better than existing approaches in terms of communication overhead and number of homomorphic operations.


privacy secure group computation cryptographic protocols multi-party reconciliation protocols fully homomorphic encryption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd SFCS, pp. 160–164. IEEE Computer Society, Washington, DC (1982)Google Scholar
  2. 2.
    Meyer, U., Wetzel, S., Ioannidis, S.: Distributed privacy-preserving policy reconciliation. In: ICC, pp. 1342–1349 (2007)Google Scholar
  3. 3.
    Meyer, U., Wetzel, S., Ioannidis, S.: New Advances on Privacy-Preserving Policy Reconciliation. In: IACR eprint 2010/64,
  4. 4.
    Mayer, D.A., Teubert, D., Wetzel, S., Meyer, U.: Implementation and Performance Evaluation of Privacy-Preserving Fair Reconciliation Protocols on Ordered Sets. In: First ACM CODASPY (2011)Google Scholar
  5. 5.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Neugebauer, G., Meyer, U., Wetzel, S.: Fair and Privacy-Preserving Multi-party Protocols for Reconciling Ordered Input Sets. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 136–151. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Neugebauer, G., Meyer, U., Wetzel, S.: Fair and Privacy-Preserving Multi-Party Protocols for Reconciling Ordered Input Sets, Extended Version (2011),
  8. 8.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010)Google Scholar
  10. 10.
    Li, R., Wu, C.: An unconditionally secure protocol for multi-party set intersection. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 226–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Sathya Narayanan, G., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A., Pandu Rangan, C.: Multi party distributed private matching, set disjointness and cardinality of set intersection with information theoretic security. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 21–40. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Patra, A., Choudhary, A., Rangan, C.P.: Selected areas in cryptography, pp. 71–91. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Frikken, K.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy preserving multiset union. IACR Cryptology ePrint Archive, 138 (2011)Google Scholar
  15. 15.
    Mayer, D., Neugebauer, G., Meyer, U., Wetzel, S.: Enabling fair and privacy-preserving applications using reconciliation protocols on ordered sets. In: 34th IEEE Sarnoff Symposium. IEEE, Princeton (2011)Google Scholar
  16. 16.
    Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: Proceedings of the 41st STOC, pp. 169–178. ACM, New York (2009)Google Scholar
  17. 17.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Micali, S.M., Wigderson, A.: How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)Google Scholar
  19. 19.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the 14th STOC, pp. 365–377. ACM Press, New York (1982)Google Scholar
  20. 20.
    Wegener, I.: The complexity of Boolean functions. John Wiley & Sons, Inc., New York (1987)zbMATHGoogle Scholar
  21. 21.
    Weingarten, F.: Evaluating the Use of Fully Homomorphic Encryption in Secure Multi-Party Computation. Diploma Thesis, Research Group IT-Security, RWTH Aachen University (2011)Google Scholar
  22. 22.
    Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and secure computation, vol. 2011 (2011)Google Scholar
  23. 23.
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University, Stanford, CA, USA, AAI3382729 (2009)Google Scholar
  24. 24.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Weingarten
    • 1
  • Georg Neugebauer
    • 1
  • Ulrike Meyer
    • 1
  • Susanne Wetzel
    • 2
  1. 1.LuFG IT-Security, UMIC Research CentreRWTH Aachen UniversityAachenGermany
  2. 2.Department of Computer ScienceStevens Institute of TechnologyUSA

Personalised recommendations