A Highly Efficient RFID Distance Bounding Protocol without Real-Time PRF Evaluation

  • Yunhui Zhuang
  • Anjia Yang
  • Duncan S. Wong
  • Guomin Yang
  • Qi Xie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7873)


There is a common situation among current distance bounding protocols in the literature: they set the fast bit exchange phase after a slow phase in which the nonces for both the reader and a tag are exchanged. The output computed in the slow phase is acting as the responses in the subsequent fast phase. Due to the calculation constrained RFID environment of being lightweight and efficient, it is the important objective of building the protocol which can have fewer number of message flows and less number of cryptographic operations in real time performed by the tag. In this paper, we propose a new highly efficient mutually-authenticated RFID distance bounding protocol that enables pre-computation which is carried out off-line by the tag. There is no evaluation on any PRF during the real time protocol running which makes the tag significantly more efficient at a low-cost. The protocol requires only O(1) complexity for achieving tag privacy. In addition, we give a detailed security analysis to prove that our protocol is secure against all common attacks in distance bounding.


RFID Distance Bounding Privacy Mutual Authentication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brands, S., Chaum, D.: Distance Bounding Protocols. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Hancke, G., Kuhn, M.: An RFID Distance Bounding Protocol. In: SecureComm 2005, pp. 67–73. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The Swiss-Knife RFID Distance Bounding Protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Desmedt, Y.: Major security problems with the ‘unforgeable’ (Feige)- Fiat- Shamir proofs of identify and how to overcome them. In: SecuriCom 1988, pp. 15–17 (1988)Google Scholar
  5. 5.
    Avoine, G., Lauradoux, C., Marin, B.: How Secret-sharing can Defeat Terrorist Fraud. In: ACM Wisec 2011, pp. 145–156. ACM SIGSAC (2011)Google Scholar
  6. 6.
    Cremers, C., Rasmussen, K.B., Čapkun, S.: Distance Hijacking Attacks on Distance Bounding Protocols. In: IEEE S&P 2012, pp. 113–127 (2012)Google Scholar
  7. 7.
    Munilla, J., Peinado, A.: Distance Bounding Protocols for RFID Enhanced by Using Void-challenges and Analysis in Noisy Channels. Wireless Communications & Mobile Computing 8(9), 1227–1232 (2008)CrossRefGoogle Scholar
  8. 8.
    Kardaş, S., Kiraz, M.S., Bingöl, M.A., Demirci, H.: A Novel RFID Distance Bounding Protocol Based on Physically Unclonable Functions. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 78–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Avoine, G., Tchamkerten, A.: An Efficient Distance Bounding RFID Authentication Protocol: Balancing False-Acceptance Rate and Memory Requirement. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 250–261. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Tu, Y.J., Piramuthu, S.: RFID Distance Bounding Protocols. In: EURASIP Workshop in RFID Technology, Vienna, Austria (2007)Google Scholar
  11. 11.
    Kim, C.H., Avoine, G.: RFID Distance Bounding Protocol with Mixed Challenges to Prevent Relay Attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Chae, H.J., Yeager, D.J., Smith, J.R., Fu, K.: Maximalist Cryptography and Computation on the WISP UHF RFID Tag. In: RFIDSec (2007)Google Scholar
  13. 13.
    Hofferek, G., Wolkerstorfer, J.: Coupon Recalculation for the GPS Authentication Scheme. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Singelée, D., Preneel, B.: Distance Bounding in Noisy Environments. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 101–115. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Yang, A., Zhuang, Y., Wong, D.S.: An Efficient Single-Slow-Phase Mutually Authenticated RFID Ddistance Bounding Protocol with Tag Privacy. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 285–292. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Nikov, V., Vauclair, M.: Yet Another Secure Distacne-Bounding Protocol. IACR ePrint Archive, and SECRYPT 2008
  17. 17.
    Rasmussen, K.B., Čapkun, S.: Location Privacy of Distance Bounding Protocols. In: ACM CCS 2008, pp. 149–160. ACM SIGSAC (2008)Google Scholar
  18. 18.
    Fischlin, M., Onete, C.: Provably Secure Distance-Bounding: an Analysis of Prominent Protocols. In: IACR ePrint Archive (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yunhui Zhuang
    • 1
  • Anjia Yang
    • 1
  • Duncan S. Wong
    • 1
  • Guomin Yang
    • 2
  • Qi Xie
    • 3
  1. 1.City University of Hong KongHong Kong
  2. 2.University of WollongongAustralia
  3. 3.Hangzhou Normal UniversityChina

Personalised recommendations