Leakage-Resilient Zero-Knowledge Proofs of Knowledge for NP

  • Hongda Li
  • Qihua Niu
  • Bei Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7873)


Leakage-resilient zero-knowledge proofs for all NP was presented by Garg et al in 2011. How to construct leakage-resilient zero-knowledge proofs of knowledge for all NP languages is an interesting problem. This paper focuses on this problem and presents a constructions of leakage-resilient zero-knowledge proofs of knowledge for HC (Hamiltonian Cycle) problem.


zero-knowledge proofs leakage-resilient proofs of knowledge black-box simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bitansky, N., Canetti, R., Halevi, S.: Leakage tolerant interactive protocols. Cryptology ePrint Archive, Report 2011/204 (2011)Google Scholar
  2. 2.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Goldreich, O.: On probabilistic versus deterministic provers in the definition of proofs of knowledge. Electronic Colloquium on Computational Complexity Report TR06-136Google Scholar
  4. 4.
    Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure against continual memory leakage. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1235–1254 (2012)Google Scholar
  5. 5.
    Boyle, E., Goldwasser, S., Kalai, Y.T.: Leakage-resilient coin tossing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 181–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Damgard, I., Hazay, C., Patra, A.: Leakage resilient two-party computation. Cryptology ePrint Archive, Report 2011/256 (2011)Google Scholar
  7. 7.
    Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof system for NP. Journal of Cryptology 9(3), 167–189 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(16), 186–208 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. of the ACM 38(3), 691–729 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Goldreich, O.: Foundations of Cryptography - Basic Tools. Cambridge University Press (2001)Google Scholar
  12. 12.
    Halevi, S., Micali, S.: More on proofs of knowledge,
  13. 13.
    Li, H., Feng, D., Li, B., Xu, H.: Round-optimal zero-knowledge proofs of knowledge for NP. Science China: Information Science 55(11), 2417–2662 (2012)CrossRefGoogle Scholar
  14. 14.
    Toshiya, I., Kouichi, S.: On the Complexity of Constant Round ZKIP of Possession of Knowledge. IEICE Trans. Fundamentals E76-A(1), 31–39 (1993)Google Scholar
  15. 15.
    Lindell, Y.: Constant-Round Zero-Knowledge Proofs of Knowledge,
  16. 16.
    Naor, M.: Bit commitment using pseudo-randomness (Extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    Pandey, O.: Achieving constant round leakage-resilient zero knowledge,
  18. 18.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hongda Li
    • 1
  • Qihua Niu
    • 1
  • Bei Liang
    • 1
  1. 1.State Key Lab of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations