Towards Hybrid Honeynets via Virtual Machine Introspection and Cloning

  • Tamas K. Lengyel
  • Justin Neumann
  • Steve Maresca
  • Aggelos Kiayias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7873)


We present a scalable honeynet system built on Xen using virtual machine introspection and cloning techniques to efficiently and effectively detect intrusions and extract associated malware binaries. By melding forensics tools with live memory introspection, the system is resistant to prior in-guest detection techniques of the monitoring environment and to subversion attacks that may try to hide aspects of an intrusion. By utilizing both copy-on-write disks and memory to create multiple identical high-interaction honeypot clones, the system relaxes the linear scaling of hardware requirements typically associated with scaling such setups. By employing a novel routing approach our system eliminates the need for post-cloning network reconfiguration, allowing the clone honeypots to share IP and MAC addresses while providing concurrent and quarantined access to the network. We deployed our system and tested it with live network traffic, demonstrating its effectiveness and scalability.


Honeypot Honeynet Introspection Virtual Machine Network Security Memory Forensics Malware Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D., Rhee, J., Xu, D.: Dksm: Subverting virtual machine introspection for fun and profit. In: Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems, SRDS 2010, pp. 82–91. IEEE Computer Society, Washington, DC (2010),
  2. 2.
    Biedermann, S., Mink, M., Katzenbeisser, S.: Fast dynamic extracted honeypots in cloud computing. In: Proceedings of the 2012 ACM Workshop on Cloud Computing Security Workshop, CCSW 2012, pp. 13–18. ACM, New York (2012), CrossRefGoogle Scholar
  3. 3.
    Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, HOTOS 2001, pp. 133–138. IEEE Computer Society, Washington, DC (2001), CrossRefGoogle Scholar
  4. 4.
    Dinaburg, A., Royal, P., Sharif, M.I., Lee, W.: Ether: malware analysis via hardware virtualization extensions. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications Security, pp. 51–62. ACM (2008),
  5. 5.
    Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J.T., Lee, W.: Virtuoso: Narrowing the semantic gap in virtual machine introspection. In: IEEE Symposium on Security and Privacy, pp. 297–312. IEEE Computer Society (2011),
  6. 6.
    Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust signatures for kernel data structures. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS 2009, pp. 566–577. ACM, New York (2009), CrossRefGoogle Scholar
  7. 7.
    Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intrusion detection. In: NDSS. The Internet Society (2003),
  8. 8.
    Hofmeyr, S.A., Somayaji, A., Forrest, S.: Intrusion detection using sequences of system calls. Journal of Computer Security 6, 151–180 (1998), Google Scholar
  9. 9.
    Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and monitoring through VMM-based ”out-of-the-box” semantic view reconstruction. ACM Trans. Inf. Syst. Secur. 13(2) (2010),
  10. 10.
    Lagar-Cavilla, H.A.: Xen-devel: Cloning a vm and copy-on-write deduplicating memory using cow page sharing in xen 4+ (February 2, 2012),
  11. 11.
    Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M., de Lara, E., Brudno, M., Satyanarayanan, M.: Snowflock: rapid virtual machine cloning for cloud computing. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, pp. 1–12. ACM, New York (2009), Google Scholar
  12. 12.
    Lengyel, T.K., Neumann, J., Maresca, S., Payne, B.D., Kiayias, A.: Virtual machine introspection in a hybrid honeypot architecture. In: Proceedings of the 5th USENIX Conference on Cyber Security Experimentation and Test, CSET 2012, p. 5. USENIX Association, Berkeley (2012), Google Scholar
  13. 13.
    Payne, B.D., Lee, W.: Secure and flexible monitoring of virtual machines. In: ACSAC, pp. 385–397. IEEE Computer Society (2007),
  14. 14.
    Pék, G., Bencsáth, B., Buttyán, L.: nether: in-guest detection of out-of-the-guest malware analyzers. In: Proceedings of the Fourth European Workshop on System Security, EUROSEC 2011, pp. 3:1–3:6. ACM, New York (2011),
  15. 15.
    Srivastava, A., Giffin, J.T.: Tamper-resistant, application-aware blocking of malicious network connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 39–58. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  16. 16.
    Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker, G.M., Savage, S.: Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, SOSP 2005, pp. 148–162. ACM, New York (2005), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tamas K. Lengyel
    • 1
  • Justin Neumann
    • 1
  • Steve Maresca
    • 1
  • Aggelos Kiayias
    • 1
  1. 1.Computer Science & Engineering DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations