Skip to main content

Path Analysis Using Directional Forces. A Practical Case: Traffic Scenes

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

  • 1836 Accesses

Abstract

This paper presents a new solution for path analysis using minimal path techniques with external directional forces. Previously techniques presented in the literature need to store every different path that exists in the scene. This is a problem in terms of memory. They also need the complete route to perform the computation, being unable to be used detecting uncommon events, like accidents, in real time. We introduce a path planning technique that, using only a velocity field, is able to cope with these problems. The technique can be used with no information a priori about the environment, while it is possible to include or even modified it. A case of study based on traffic analysis is presented to show the performance of the methodology. A complex turnaround scene along with highway real data tested our methodology, showing promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouguet, J.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)

    Google Scholar 

  2. Calderara, S., Cucchiara, R., Prati, A.: Detection of abnormal behaviors using a mixture of von mises distributions. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007, pp. 141–146 (September 2007)

    Google Scholar 

  3. Cancela, B., Ortega, M., Fernández, A., Penedo, M.G.: Path Analysis in Multiple-Target Video Sequences. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part II. LNCS, vol. 6979, pp. 50–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24, 57–78 (1997)

    Article  Google Scholar 

  5. Elston, J., Stachura, M., Frew, E., Herzfeld, U.: Toward model free atmospheric sensing by aerial robot networks in strong wind fields. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 369–374 (May 2009)

    Google Scholar 

  6. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image and Vision Computing 14(8), 609–615 (1996)

    Article  Google Scholar 

  7. Junejo, I., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 716–719 (August 2004)

    Google Scholar 

  8. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining, pp. 285–289 (2000)

    Google Scholar 

  9. Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(3), 397–408 (2005)

    Article  Google Scholar 

  10. Moore, B.E., Ali, S., Mehran, R., Shah, M.: Visual crowd surveillance through a hydrodynamics lens. Commun. ACM 54(12), 64–73 (2011)

    Article  Google Scholar 

  11. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: Experimental studies and comparative evaluation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 312–319 (2009)

    Google Scholar 

  12. Porikli, F., Haga, T.: Event detection by eigenvector decomposition using object and frame features. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2004., p. 114 (June 2004)

    Google Scholar 

  13. Saleemi, I., Shafique, K., Shah, M.: Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1472–1485 (2009)

    Article  Google Scholar 

  14. Sethian, J.A., Vladimirsky, A.: Ordered Upwind Methods for Static Hamilton–Jacobi Equations: Theory and Algorithms. SIAM Journal on Numerical Analysis 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X., Ma, K., Ng, G.-W., Grimson, W.: Trajectory analysis and semantic region modeling using nonparametric hierarchical bayesian models. International Journal of Computer Vision 95, 287–312 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cancela, B., Ortega, M., Penedo, M.G. (2013). Path Analysis Using Directional Forces. A Practical Case: Traffic Scenes. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics