On the Identification and Establishment of Topological Spatial Relations

  • Sergio Miguel-Tomé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


Human beings use spatial relations to describe many daily tasks in their language. However, to date in robotics the navigation problem has been thoroughly investigated as the task of guiding a robot from one spatial coordinate to another. Therefore, there is a difference of abstraction between the language of human beings and the algorithms used in robot navigation. This article introduces the research performed on the use of topological relations for the formalization of spatial relations and navigation. The main result is a new heuristic, called Heuristic of Topological Qualitative Semantic (HTQS), which allows the identification and establishment of spatial relations.


qualitative navigation spatial relations Heuristic of Topological Qualitative Semantic (HTQS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)CrossRefGoogle Scholar
  3. 3.
    Cohn, A.G., Renz, J.: Qualitative spatial reasoning. In: Handbook of Knowledge Representation, pp. 581–584 (2008)Google Scholar
  4. 4.
    Delafontaine, M., et al.: Qualitative relations between moving objects in a network changing its topological relations. Information Sciences 178(8), 1997–2006 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dylla, F., et al.: Approaching a formal soccer theory from behaviour specifications in robotic soccer. Computer Science and Sports (2008)Google Scholar
  6. 6.
    Egenhofer, M.J., Al-Taha, K.K.: Reasoning about gradual changes of topological relationships. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  7. 7.
    Egenhofer, M.J., Herring, J.: A mathemathical framework for the definition of topological relathionships. In: Fourth ISSDH, pp. 803–813 (1990)Google Scholar
  8. 8.
    Egenhofer, M.J., et al.: A critical comparison of the 4-intersection and 9-intersection models for spatial relations. Auto-Carto 11, 1–11 (1993)Google Scholar
  9. 9.
    Egenhofer, M.J., Sharma, J.: Topological relations between regions in ℝ2 and ℤ2. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 316–336. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Ernst, G.W.: Sufficient conditions for the success of GPS. Journal of the ACM 16(4), 517–533 (1969)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ferrein, A., Fritz, C., Lakemeyer, G.: Using Golog for deliberation and team coordination in robotic soccer. Künstliche Intelligenz 19, 24–30 (2005)Google Scholar
  12. 12.
    Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. Artificial Intelligence 2(3), 189–208 (1971)zbMATHCrossRefGoogle Scholar
  13. 13.
    Forbus, K.D., Nielsen, P., Faltings, B.: Qualitative spatial reasoning: the clock project. Artificial Intelligence 51(1-3), 417–471 (1991)CrossRefGoogle Scholar
  14. 14.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning (1991)Google Scholar
  15. 15.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54(1-2), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1), 67–95 (1986)CrossRefGoogle Scholar
  17. 17.
    Levesque, H.J., et al.: Golog: a logic programming language for dynamic domains. The Journal of Logic Programming 31(1-3), 59–83 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Li, Y., Li, S.: A fuzzy sets theoretic approach to approximate spatial reasoning. IEEE Transactions on Fuzzy Systems 12(6), 745–754 (2004)CrossRefGoogle Scholar
  19. 19.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. In: Readings in Nonmonotonic Reasoning, pp. 26–45 (1987)Google Scholar
  20. 20.
    Renz, J.: Qualitative Spatial Reasoning with Topological Information. LNCS (LNAI), vol. 2293. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Schlieder, C.: Representing visible locations for qualitative navigation. In: Qualitative Reasoning and Decision Technologies, pp. 523–532 (1993)Google Scholar
  22. 22.
    Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173(2), 258–298 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Van de Weghe, N., et al.: A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics 35(1), 97–119 (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergio Miguel-Tomé
    • 1
  1. 1.Grupo de Investigación en Minería de Datos (MiDa)Universidad de SalamancaSalamancaSpain

Personalised recommendations