Detection of Fishes in Turbulent Waters Based on Image Analysis

  • Alvaro Rodriguez
  • Juan R. Rabuñal
  • Maria Bermudez
  • Jeronimo Puertas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


This paper analyses the automatic fish segmentation problem in turbulent waters. To this end, a SOM neural network is used to detect fishes in images from an underwater camera system built in a vertical slot fishway, an hydraulic structure built in obstructions in rivers to allow the upstream migration of fishes.

This technique allows the study of real fish behavior and may help to understand biological variables and swimming limitations of the fish species in high speed environments.

This knowledge, may be used to replace traditional techniques such as direct observation or placement of sensors on the specimens, which are impractical or affect the fish behavior.

To test the proposed technique, a ground true dataset was designed with experts and a series of assays have been performed where the results obtained with the proposed technique were compared with different segmentation techniques.


Fish-Detection Segmentation SOM Turbulent Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puertas, J., Pena, L., Teijeiro, T.: An Experimental Approach to the Hydraulics of Vertical Slot Fishways. Journal of Hydraulics Engineering 130 (2004)Google Scholar
  2. 2.
    Rajaratnam, N., Vinnie, G.V.D., Katopodis, C.: Hydraulics of Vertical Slot Fishways. Journal of Hydraulic Engineering 112, 909–927 (1986)CrossRefGoogle Scholar
  3. 3.
    Tarrade, L., Texier, A., David, L.: Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 609, 177–188 (2008)CrossRefGoogle Scholar
  4. 4.
    Wu, S., Rajaratma, N., Katopodis, C.: Structure of flow in vertical slot fishways. Journal of Hydraulic Engineering 125, 351–360 (1999)CrossRefGoogle Scholar
  5. 5.
    Dewar, H., Graham, J.: Studies of tropical tuna swimming performance in a large water tunnel – Energetics. Journal of Experimental Biology 192, 13–31 (1994)Google Scholar
  6. 6.
    Blake, R.W.: Fish functional design and swimming performance. Journal of Fish Biology 65, 1193–1222 (2004)CrossRefGoogle Scholar
  7. 7.
    Photographic and acoustic tracking observations of the behavior of the grenadier Coryphaenoides (Nematonorus) armatus, the eel Synaphobranchus bathybius, and other abyssal demersal fish in the North Atlantic Ocean. Marine Biology 112, 1432–1793 (1992)Google Scholar
  8. 8.
    Steig, T.W., Iverson, T.K.: Acoustic monitoring of salmonid density, target strength, and trajectories at two dams on the Columbia River, using a split-beam scaning system. Fisheries Research 35, 43–53 (1998)CrossRefGoogle Scholar
  9. 9.
    Deng, Z., Richmond, M.C., Guest, G.R., Mueller, R.P.: Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging. US Department of Energy, Technical Report (2004)Google Scholar
  10. 10.
    Duarte, S., Reig, L., Oca, J., Flos, R.: Computerized imaging techniques for fish tracking in behavioral studies. European Aquaculture Society (2004)Google Scholar
  11. 11.
    Chambah, M., Semani, D., Renouf, A., Courtellemont, P., Rizzi, A.: Underwater color constancy enhancement of automatic live fish recognition. IS&T Electronic Imaging, SPIE (2004)Google Scholar
  12. 12.
    Petrell, R.J., Shi, X., Ward, R.K., Naiberg, A., Savage, C.R.: Determining fish size and swimming speed in cages and tanks using simple video techniques. Aquacultural Engineering 16, 63–84 (1997)CrossRefGoogle Scholar
  13. 13.
    Morais, E.F., Campos, M.F.M., Padua, F.L.C., Carceroni, R.L.: Particle filter-based predictive tracking for robust fish count. In: Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI (2005)Google Scholar
  14. 14.
    Clausen, S., Greiner, K., Andersen, O., Lie, K.-A., Schulerud, H., Kavli, T.: Automatic segmentation of overlapping fish using shape priors. In: Scandinavian Conference on Image Analysis (2007)Google Scholar
  15. 15.
    Chuang, M.-C., Hwang, J.-N., Williams, K., Towler, R.: Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems. In: IEEE International Conference on Image Processing, ICIP (2011)Google Scholar
  16. 16.
    Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.: Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. In: Int. Conf. on Computer Vision Theory and Applications, VISAPP (2008)Google Scholar
  17. 17.
    Lines, J.A., Tillett, R.D., Ross, L.G., Chan, D., Hockaday, S., McFarlane, N.J.B.: An automatic image-based system for estimating the mass of free-swimming fish. Computers and Electronics in Agriculture 31, 151–168 (2001)CrossRefGoogle Scholar
  18. 18.
    Rodriguez, A., Bermudez, M., Rabuñal, J.R., Puertas, J., Dorado, J., Balairon, L.: Optical Fish Trajectory Measurement in Fishways through Computer Vision and Artificial Neural Networks. Journal of Computing in Civil Engineering 25, 291–301 (2011)CrossRefGoogle Scholar
  19. 19.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybernet. 43, 59–69 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Moya, F., Herrero, V., Guerrero, G.: La aplicación de redes neuronales artificiales (RNA) a la recuperación de la información. SOCADI Yearbook of Information and Documentation 1998(2), 147–164 (1998)Google Scholar
  22. 22.
    Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys 38 (2006)Google Scholar
  23. 23.
    Verikas, A., Malmqvist, K., Bergman, L.: Color image segmentation by modular neural networks. Pattern Recognition Letters 18, 175–185 (1997)CrossRefGoogle Scholar
  24. 24.
    Dong, G., Xie, M.: Color clustering and learning for image segmentation based on neural networks. IEEE Transactions on Neural Networks 16, 925–936 (2005)CrossRefGoogle Scholar
  25. 25.
    Egmont-Petersen, M., Ridder, D., Handels, H.: Image processing with neural networks-a review. Pattern Recognition 35, 2279–2301 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Cristea, P.: Application of Neural Networks In Image Processing and Visualization. In: GeoSpatial Visual Analytics, pp. 59–71. Springer, Netherlands (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alvaro Rodriguez
    • 1
  • Juan R. Rabuñal
    • 1
    • 2
  • Maria Bermudez
    • 3
  • Jeronimo Puertas
    • 3
  1. 1.Dept. of Information and Communications TechnologiesUniversity of A CoruñaA CoruñaSpain
  2. 2.Centre of Technological Innovation in Construction and Civil Engineering (CITEEC)University of A CoruñaA CoruñaSpain
  3. 3.Dept. of Hydraulic Engineering (ETSECCP)University of A CoruñaA CoruñaSpain

Personalised recommendations