Improved Polar Scan-Matching Using an Advanced Line Segmentation Algorithm

  • Israel Navarro Santosjuanes
  • José Manuel Cuadra-Troncoso
  • Félix de la Paz López
  • Raúl Arnau Prieto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


This work presents an enhanced polar scan-matching procedure (E-PSM) that obtains its inputs from the application of an advanced line segmentation algorithm to the laser range returns. Additionally, a set of alternative methods based on local and global optimization algorithms is introduced. Results from robot simulation tests are provided for different ranges of laser range return noise and odometry sensor error levels. The results show that the proposed E-PSM algorithm and one of the methods based on global optimization yield good robot pose estimation precision while keeping computational costs at a reasonable level.


Mobile Robot Global Optimization Algorithm Robot Position Global Optimization Technique Line Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proc. IEEE Int. Workshop on Intelligent Robots and Systems, Osaka, Japan, pp. 1442–1447 (1991)Google Scholar
  2. 2.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: UAI, pp. 435–461 (1986)Google Scholar
  3. 3.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. In: Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 935–938 (June 1994)Google Scholar
  4. 4.
    Tomono, M.: A scan matching method using euclidean invariant signature for global localization and map building. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 1, pp. 866–871 (2004)Google Scholar
  5. 5.
    Weiss, G., Puttkamer, E.: A map based on laserscans without geometric interpretation. In: Proceedings of Intelligent Autonomous Systems 4 (IAS-4), pp. 403–407. IOS Press (1995)Google Scholar
  6. 6.
    Borthwick, S., Durrant-Whyte, H.: Simultaneous localisation and map building for autonomous guided vehicles. In: Proceedings of the IEEE/RSJ/GI International Conference on ntelligent Robots and Systems 1994. Advanced Robotic Systems and the Real World, IROS 1994, vol. 2, pp. 761–768 (September 1994)Google Scholar
  7. 7.
    Cox, I.: Blanche-an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)CrossRefGoogle Scholar
  8. 8.
    Gutmann, J.S.: Robuste Navigation autonomer mobiler Systeme. PhD thesis, Albert-Ludwigs-Universitat Freiburg, Institut fur Informatik (2000)Google Scholar
  9. 9.
    Lingemann, K., Surmann, H., Nuchter, A., Hertzberg, J.: Indoor and outdoor localization for fast mobile robots. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 2185–2190 (2004)Google Scholar
  10. 10.
    Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  11. 11.
    Diosi, A., Kleeman, L.: Fast laser scan matching using polar coordinates. Int. J. Rob. Res. 26, 1125–1153 (2007)CrossRefGoogle Scholar
  12. 12.
    Cuadra Troncoso, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Fernández-Caballero, A.: Improving area center robot navigation using a novel range scan segmentation method. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 233–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (1999)Google Scholar
  14. 14.
    Johnson, S.G.: The nlopt nonlinear-optimization package,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Israel Navarro Santosjuanes
    • 1
  • José Manuel Cuadra-Troncoso
    • 1
  • Félix de la Paz López
    • 1
  • Raúl Arnau Prieto
    • 1
  1. 1.Dpto. de Inteligencia ArtificialUNEDMadridSpain

Personalised recommendations