Motor Imagery Classification for BCI Using Common Spatial Patterns and Feature Relevance Analysis

  • Luisa F. Velásquez-Martínez
  • A. M. Álvarez-Meza
  • C. G. Castellanos-Domínguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7931)


Recently, there have been many efforts to develop Brain Computer Interface (BCI) systems, allowing to identify and discriminate brain activity. In this work, a Motor Imagery (MI) discrimination framework is proposed, which employs Common Spatial Patterns (CSP) as preprocessing stage, and a feature relevance analysis approach based on an eigendecomposition method to identify the main features that allow to discriminate the studied EEG signals. The CSP is employed to reveal the dynamics of interest from EEG signals, and then we select a set of features representing the best as possible the studied process. EEG signals modeling is done by feature estimation of three frequency-based and one time-based. Besides, a relevance analysis over the EEG channels is performed, which gives to the user an idea about the channels that mainly contribute for the MI discrimination. Our approach is tested over a well known MI dataset. Attained results (95.21±4.21 [%] mean accuracy) show that presented framework can be used as a tool to support the discrimination of MI brain activity.


Motor Imagery Common Spatial Patterns Feature Relevance Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wei-He, Wei, P., Wang, L., Zou, Y.: A novel emd-based common spatial pattern for motor imagery brain-computer interface. In: IEEE EMBC (2012)Google Scholar
  2. 2.
    Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (fbcsp) in brain-computer interface. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence) (2008)Google Scholar
  3. 3.
    Rodríguez, G., García, P.J.: Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. Medical Systems 36(1), 51–63 (2012)CrossRefGoogle Scholar
  4. 4.
    Corralejo, R., Hornero, R., Álvarez, D.: Feature selection using a genetic algorithm in a motor imagerybased brain computer interface. In: IEEE EMBC (2011)Google Scholar
  5. 5.
    Bankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-R.: Optimizing spatial filters for robust eeg single-trial analysis. IEEE Signal Processing Magazine 08, 41–56 (2008)CrossRefGoogle Scholar
  6. 6.
    Teixeira, A.R., Tomé, A.M., Boehm, M., Puntonet, C., Lang, E.: How to apply nonlinear subspace techniques to univariate biomedical time series. IEEE Trans. on Instrument. and Measur. 58(8), 2433–2443 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, M.-A., Wang, R., Hao, D.-M., Yang, J.-F.: Feature extraction and classification of mental eeg for motor imagery. In: 5th Int. Conf. on Nat. Comp., ICNC 2009, vol. 2 (2009)Google Scholar
  8. 8.
    Daza-Santacoloma, G., Arias-Londoño, J.D., Godino-Llorente, J.I., Sáenz-Lechón, N., Osma-Ruíz, V., Castellanos-Domínguez, G.: Dynamic feature extraction: An application to voice pathology detection. Intel. Aut. and Soft Comp. (2009)Google Scholar
  9. 9.
    Hanakama, T., Immisch, I., Toma, K., Dimyan, M.A., Van Gelderen, P., Hallett, M.: Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89, 989–1002 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luisa F. Velásquez-Martínez
    • 1
    • 2
  • A. M. Álvarez-Meza
    • 1
    • 2
  • C. G. Castellanos-Domínguez
    • 1
    • 2
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de Colombia sede ManizalesColombia
  2. 2.Universidad Nacional de ColombiaManizalesColombia

Personalised recommendations