Skip to main content

Aggregation in Systems of Ionic Liquids

  • Chapter
  • First Online:
Structures and Interactions of Ionic Liquids

Part of the book series: Structure and Bonding ((STRUCTURE,volume 151))

Abstract

Material preparation in ionic liquids and environmental pollution control by ionic liquids are often closely dependent on the aggregation behavior of ionic liquids in solution. Therefore, understanding the aggregation behavior of ionic liquids in solution is very important from both fundamental and applied aspects. In this chapter, our aim is to provide a summary of our current state of knowledge of the aggregation of ionic liquids in solutions modulated by alkyl chain length, cationic structure, and anionic type of ionic liquids, and by addition of inorganic salts, organic solvents, and surfactants. The possible mechanism for the effect of these factors on the aggregation behavior of ionic liquids has been analyzed, and the potential applications of ionic liquids aggregation in membrane separation of ionic liquids wastewater, controlled drug release, breakage of oil/water emulsions, and selective separation of protein (BSA) from aqueous saccharides has also been illustrated. In addition, the challenges in this field have been addressed and some suggestions are made for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welton T (1996) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  Google Scholar 

  2. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    Article  CAS  Google Scholar 

  3. Docherty KM, Kulpa J, Charles F (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    Article  CAS  Google Scholar 

  4. Wasserschein P, Welton T (2003) Ionic liquids in syntheses. VCH-Wiley, Weinhein

    Google Scholar 

  5. Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138

    Article  Google Scholar 

  6. Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060

    Article  CAS  Google Scholar 

  7. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry – a review. Chemphyschem 5:1106–1120

    Article  CAS  Google Scholar 

  8. Endres F, Abedin SZE (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  9. Liu J, Jonsson JA, Jing G (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27

    Article  Google Scholar 

  10. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  11. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  CAS  Google Scholar 

  12. Visser A, Swaltowski RP, Reichert RM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36:2523–2529

    Article  CAS  Google Scholar 

  13. Zhang J, Yang C, Hou Z (2003) Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. New J Chem 27:333–336

    Article  CAS  Google Scholar 

  14. Ianchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444

    Article  Google Scholar 

  15. Armstrong W, Anderson JL (2003) High-stability ionic liquids: a new class of stationary phases for gas chromatography. Anal Chem 75:4851–4858

    Article  Google Scholar 

  16. Bowers JP, Butts CJ, Martin PC, Vergara-Gutierrez M (2004) Aggregation behaviour of aqueous solutions in ionic liquids. Langmuir 20:2191–2198

    Article  CAS  Google Scholar 

  17. Miskolczy Z, Sebok-Nagy K, Biczok L, Gokturk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  18. Vanyur R, Biczok L, Miskolczy Z (2007) Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 299:256–261

    Article  CAS  Google Scholar 

  19. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  20. Huddleston JG, Visser AE, Reichert MW, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  21. Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516

    Article  CAS  Google Scholar 

  22. Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöing J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 316:278–284

    Article  CAS  Google Scholar 

  23. Modaressi A, Sifaoui H, Mielcarz M, Domanska U, Rogalski M (2007) Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions. Colloids Surf A Physicochem Eng Aspects 302:181–185

    Article  CAS  Google Scholar 

  24. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304

    Article  Google Scholar 

  25. Thomaier S, Werner K (2007) Aggregates in mixtures of ionic liquids. J Mol Liq 130:104–107

    Article  CAS  Google Scholar 

  26. Goodchild I, Collier L, Millar SL, Prokěs I, Lord JCD, Butts CPB, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  27. Sirieix-Plénet J, Gaillon L, Letellier P (2004) Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water: potentiometric and conductimetric studies. Talanta 63:979–986

    Article  Google Scholar 

  28. Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A Physicochem Eng Aspects 302:150–156

    Article  CAS  Google Scholar 

  29. Dong B, Li N, Zheng L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  30. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazoliium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  31. Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  32. Zhao Y, Gao S, Wang J, Tang J (2008) Aggregation of ionic liquids [C n mim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study. J Phys Chem B 112:2031–2039

    Article  CAS  Google Scholar 

  33. Lianos P, Zana R (1981) Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution. J Colloid Interface Sci 84:100–107

    Article  CAS  Google Scholar 

  34. Li XW, Gao YA, Liu J, Zheng LQ, Chen B, Wu LZ, Tung CH (2010) Aggregation behavior of a chiral long- chain ionic liquid in aqueous solution. J Colloid Interface Sci 343:94–101

    Article  CAS  Google Scholar 

  35. Zhang H, Li K, Liang H, Wang J (2008) Spectroscopic studies of the aggregation of imidazolium-based ionic liquids. Colloids Surf A Physicochem Eng Aspects 329:75–81

    Article  CAS  Google Scholar 

  36. Bai G, Lopes A, Bastos M (2008) Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J Chem Thermodyn 40:1509–1516

    Article  CAS  Google Scholar 

  37. Geng F, Liu J, Zheng L, Yu L, Li Z, Li G, Tung C (2010) Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J Chem Eng Data 55:147–151

    Article  CAS  Google Scholar 

  38. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171

    Article  CAS  Google Scholar 

  39. Singh T, Kumar A (2008) Self-aggregation of ionic liquids in aqueous media: a thermodynamic study. Colloids Surf A Physicochem Eng Aspects 318:263–268

    Article  CAS  Google Scholar 

  40. Łuczak J, Hupka J, Thoeming J, Jungnickel C (2007) In: Wilk KA (ed) International scientific conference, surfactants and dispersed systems in theory and practice. PALMA Press, Wrocław/Ksiaz Castle

    Google Scholar 

  41. Rodriguez JR, Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J (2005) Thermodynamics of micellization of alkyldimethylbenzylammonium chlorides in aqueous solutions. J Colloid Interface Sci 250:438–443

    Article  Google Scholar 

  42. Chen L, Shi-Yow L, Chiung-Chang H, En-Ming C (1998) Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf A Physicochem Eng Aspects 135:175–181

    Article  CAS  Google Scholar 

  43. Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf A Physicochem Eng Aspects 255:153–157

    Article  CAS  Google Scholar 

  44. Muller N (1993) Temperature dependence of critical micelle concentrations and heat capacities of micellization for ionic surfactants. Langmuir 9:96–100

    Article  CAS  Google Scholar 

  45. Richard CR, Wildin JL, Rapp AL, Moyna GM (2007) Hydrogen bonds in ionic liquids revisited: (35/37)Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621

    Article  Google Scholar 

  46. Stepnowski P, Nichthauser J, Mrozik W, Buszewski B (2006) Usefulness of π…π aromatic interactions in the selective separation and analysis of imidazolium and pyridinium ionic liquid cations. Anal Bioanal Chem 385:1483–1491

    Article  CAS  Google Scholar 

  47. Gonzalez-Perez A, Ruso JM, Prieto G, Sarmiento F (2004) Self-assembly of sodium heptafluorobutyrate in aqueous solution. Colloids Surf A Physicochem Eng Aspects 249:41–44

    Article  CAS  Google Scholar 

  48. Zhao M, Zheng L (2011) Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution. Phys Chem Chem Phys 13:1332–1337

    Article  CAS  Google Scholar 

  49. Klevens HB (1953) Structure and aggregation in dilate solution of surface active agents. J Am Oil Chem Soc 30:74–80

    Article  CAS  Google Scholar 

  50. Huibers PDT, Lobanov VS, Katritzky AR, Shah DO, Karelson M (1997) Prediction of critical micelle concentration using a quantitative structure–property relationship approach. J Colloid Interface Sci 187:113–120

    Article  CAS  Google Scholar 

  51. Baker GA, Pandey S, Pandey S, Baker SN (2004) A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. Analyst 12:890–892

    Article  Google Scholar 

  52. Łuczaka J, Hupkaa J, Thöing J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 329:125–133

    Article  Google Scholar 

  53. Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J Phys Chem B 112:16682–16689

    Article  CAS  Google Scholar 

  54. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 111:13082–13089

    Article  CAS  Google Scholar 

  55. Tokuda H, Ishii K, Suan MABH, Tauzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839

    Article  CAS  Google Scholar 

  56. Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciiano T (2007) Development of cation/anion “interaction” scales for ionic liquids through ESI-MS measurements. J Phys Chem B 111:598–604

    Article  CAS  Google Scholar 

  57. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia Lopes JN, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650

    Article  CAS  Google Scholar 

  58. Pino V, Baltazar QQ, Anderson JL (2007) Examination of analyte partitioning to monocationic and dicationic imidazolium-based ionic liquid aggregates using solid-phase microextraction-gas chromatography. J Chromatogr A 1148:92–99

    Article  CAS  Google Scholar 

  59. Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211

    Article  CAS  Google Scholar 

  60. Sepúlveda L, Cortés J (1985) Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions. J Phys Chem 89:5322–5324

    Article  Google Scholar 

  61. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. – Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  62. Bunton CA, Cowell C (1988) The binding of phenols and phenoxide ions to cationic micelles. J Colloid Interface Sci 122:154–162

    Article  CAS  Google Scholar 

  63. Abdel-Rahem R (2008) The influence of hydrophobic counterions on micellar growth of ionic surfactants. Adv Colloid Interface Sci 141:24–36

    Article  CAS  Google Scholar 

  64. Shaw DJ (1992) Introduction to colloid and surface chemistry. Butterworth, Heinemann, Oxford

    Google Scholar 

  65. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A Physicochem Eng Aspects 317:666–672

    Article  CAS  Google Scholar 

  66. Vaghela NM, Sastry NV, Aswal VK (2011) Effect of additives on the surface active and morphological features of 1-octyl-3-methylimidazolium halide aggregates in aqueous media. Colloids Surf A Physicochem Eng Aspects 373:101

    Article  CAS  Google Scholar 

  67. Wang H, Feng Q, Wang J, Zhang H (2010) Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solutions. J Phys Chem B 114:1380–1387

    Article  CAS  Google Scholar 

  68. Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    Article  CAS  Google Scholar 

  69. Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA (1997) The effect of counterion competition for cetyltrimethylammonium micellar surfaces on micellar growth horizons: electrostatics and specific binding. J Phys Chem B 101:7919–7927

    Article  CAS  Google Scholar 

  70. Armstrong DW, Henry SJ (1980) Use of an aqueous micellar mobile phase for separation of phenols and polynuclear aromatic hydrocarbons via HPLC. J Liq Chromatogr 3:657–662

    Article  CAS  Google Scholar 

  71. Berthod A, García-álvarez-Coque C (2000) Micellar liquid chromatography. Marcel Dekker, New York

    Google Scholar 

  72. Esteve-Romero J, Carda-Broch S, Gil-Agustí M, Capella-Peiró ME, Bose D (2005) Micellar liquid chromatography for the determination of drug materials in pharmaceutical preparations and biological samples. Trends Anal Chem 24:75–91

    Article  CAS  Google Scholar 

  73. Armstrong DW (1985) Micelles in separations: application and theory. Sep Purif Methods 14:213–304

    Article  CAS  Google Scholar 

  74. Thomas DP, Foley JP (2007) Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier. J Chromatogr A 1149:282–293

    Article  CAS  Google Scholar 

  75. Ruiz-ángel MJ, Torres-Lapasió JR, García-álvarez-Coque MC (2008) Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Anal Chem 80:9705–9713

    Article  Google Scholar 

  76. Pino V, Yao C, Anderson JL (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures. J Colloid Interface Sci 333:548–556

    Article  CAS  Google Scholar 

  77. Wang J, Zhang L, Wang H, Wu C (2012) Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution. J Phys Chem B 115:4955–4962

    Article  Google Scholar 

  78. Sugihara S, Era Y, Funatsu M, Kunitake T, Lee S, Sasaki Y (1997) Micelle formation of dodecylammonium surfactant with mixed counterions: perfluorocarboxylate and alkanesulfonate ions. J Colloid Interface Sci 187:435–442

    Article  CAS  Google Scholar 

  79. Beyaz A, Oh WS, Reddy VP (2004) Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate. Colloids Surf B Biointerfaces 35:119

    Article  CAS  Google Scholar 

  80. Dorbritz S, Ruth W, Kragl U (2005) Investigation on aggregate formation of ionic liquids. Adv Synth Catal 347:1273–1279

    Article  CAS  Google Scholar 

  81. Li W, Zhang Z, Zhang J, Han B, Wang B, Hou M, Xie Y (2006) Micropolarity and aggregation behavior in ionic liquid + organic solvent solutions. Fluid Phase Equilibria 248:211–216

    Article  CAS  Google Scholar 

  82. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva HML, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349

    Article  CAS  Google Scholar 

  83. Feng Q, Wang H, Zhang S, Wang J (2010) Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide ionic liquid in non-aqueous solvents. Colloids Surf A Physicochem Eng Aspects 367:7–11

    Article  CAS  Google Scholar 

  84. Singh T, Kumar A (2007) Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J Phys Chem B 111:7843–7851

    Article  CAS  Google Scholar 

  85. Bhargava BL, Klein ML (2009) Molecular dynamics studies of cation aggregation in the room temperature ionic liquid [C10mim][Br] in aqueous solution. J Phys Chem A 113:1898–1904

    Article  CAS  Google Scholar 

  86. Bhargava BL, Klein ML (2009) Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies. J Phys Chem B 113:9499–94505

    Article  CAS  Google Scholar 

  87. Fernández JF, Waterkamp D, Thöming J (2008) Recovery of ionic liquids from wastewater: aggregation control for intensified membrane filtration. Desalination 224:52–56

    Article  Google Scholar 

  88. Shen Y, Zhang Y, Kuehner D, Yang G, Yuan F, Niu L (2008) Ion-responsive behavior of ionic-liquid surfactant aggregates with applications in controlled release and emulsification. Chemphyschem 9:2198–2202

    Article  CAS  Google Scholar 

  89. Pei YC, Li ZY, Liu L, Wang JJ, Wang HY (2010) Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci China Chem 53:1554–1560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianji Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J., Wang, H. (2014). Aggregation in Systems of Ionic Liquids. In: Zhang, S., Wang, J., Lu, X., Zhou, Q. (eds) Structures and Interactions of Ionic Liquids. Structure and Bonding, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38619-0_2

Download citation

Publish with us

Policies and ethics