Skip to main content

Structure, Interaction and Hydrogen Bond

  • Chapter
  • First Online:
Structures and Interactions of Ionic Liquids

Part of the book series: Structure and Bonding ((STRUCTURE,volume 151))

Abstract

Ionic liquids (ILs), as green solvents, have attracted amazing interest and their potential applications have prompted a large amount of research and investment, and some of the results have been inspiring. In recent years, in combination with cations and anions, some new ILs have been synthesized in the laboratory. However, compared with simple solid salts, the structures of ILs are complicated and their properties vary considerably. It is thus very time consuming to explore ILs experimentally when facing the huge number of ionic combinations. A molecular-based understanding can reveal the quantitative correlation between structures and properties, and is thus an important subject in the study of ILs. The unusual complexity of ionic interactions renders molecular-based interpretations difficult and gives rise to controversies about the structure of the ILs. Herein we discuss the ion-pair, cluster and X-ray crystals structures and their relationship with the properties of many typical ILs, especially imidazolium-based. In the ILs, apart from the strong electrostatic forces, non-covalent H-bonds and van der Waals (dispersion, induce forces) are examined and are shown to have a decisive effect on the properties of ILs.

Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci St Petersbourg 8:405–422

    Google Scholar 

  2. Li Chum H, Koch VR, Miller LL et al. (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265

    Google Scholar 

  3. Fuller J, Carlin RT, Long HCD et al. (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 299–300

    Google Scholar 

  4. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967

    Google Scholar 

  5. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    CAS  Google Scholar 

  6. Nockemann P, Thijs B, Driesen K et al. (2007) Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. J Phys Chem B 111:5254–5263

    CAS  Google Scholar 

  7. Pernak J, Syguda A, Mirska I et al. (2007) Choline-derivative-based ionic liquids. Chem Eur J 13:6817–6827

    CAS  Google Scholar 

  8. Fredlake CP, Crosthwaite JM, Hert DG et al. (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:945–964

    Google Scholar 

  9. Raabe G, Köhler J (2008) Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation. J Chem Phys 128:154509

    Google Scholar 

  10. Weingartner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Google Scholar 

  11. Zhang S, Sun N, He X et al. (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517

    CAS  Google Scholar 

  12. Bonhôte P, Dias AP, Papageorgiou N et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Google Scholar 

  13. Tokuda H, Hayamizu K, Ishii K et al. (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    CAS  Google Scholar 

  14. Mcewen AB, Ngo HL, Lecompte K et al. (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1697

    CAS  Google Scholar 

  15. Hyun B, Dzyuba SV, Bartsch RA et al. (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106:7579–7585

    CAS  Google Scholar 

  16. Every HA, Bishop AG, Macfarlane D et al. (2004) Transport properties in a family of dialkylimidazolium ionic liquids. Phys Chem Chem Phys 6:1758–1765

    CAS  Google Scholar 

  17. Huddleston JG, Visser AE, Reichert WM et al. (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    CAS  Google Scholar 

  18. Tsuzuki S, Tokuda H, Hayamizu K et al. (2005) Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J Phys Chem B 109:16474–16481

    CAS  Google Scholar 

  19. Fitchett BD, Knepp TN, Conboy JC (2004) 1-Alkyl-3-methylimidazolium bis(perfluoroalkylsulfonyl)imide water-immiscible ionic liquids. J Electrochem Soc 151:E219–E225

    CAS  Google Scholar 

  20. Macfarlane D, Sun J, Golding JJ et al. (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278

    Google Scholar 

  21. Hyk W, Caban K, Donten M et al. (2001) Properties of microlayers of ionic liquids generated at microelectrode surface in undiluted redox liquids. Part II J Phys Chem B 105:6943–6949

    CAS  Google Scholar 

  22. Earle MJ, Esperanc JMSS, Gilea MA et al. (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    CAS  Google Scholar 

  23. Zaitsau DH, Kabo GJ, Strechan AA et al. (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306

    CAS  Google Scholar 

  24. Köddermann T, Paschek D, Ludwig R (2008) Ionic liquids: dissecting the heat of vaporization. Chem Phys Chem 9:549–555

    Google Scholar 

  25. Blanchard LA, Gu ZY, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444

    CAS  Google Scholar 

  26. Cammarata L, Kazarian SG, Salterb PA et al. (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    CAS  Google Scholar 

  27. Devyatykh GG, Sennikov PG (1995) Spectroscopic determination and study of the molecular state of water in ultrapure volatile inorganic substances. Russ Chem Rev 64:817–830

    Google Scholar 

  28. Rivera-Rubero S, Baldelli S (2004) Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J Am Chem Soc 126:11788–11789

    CAS  Google Scholar 

  29. Bhargava BL, Balasubramanian S (2006) Layering at an ionic liquid–vapor interface: a molecular dynamics simulation study of [bmim][PF6]. J Am Chem Soc 128:10073–10078

    CAS  Google Scholar 

  30. Rogers RD (2007) Reflections on ionic liquids. Nature 447:917–918

    CAS  Google Scholar 

  31. Katritzky AR, Lomaka A, Petrukhin R et al. (2002) Correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comput Sci 42:71–74

    CAS  Google Scholar 

  32. Elaiwi A, Hitchcock PB, Seddon KR et al. (1995) Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(llI) ionic liquids. J Chem Soc Dalton Trans 3467–3472

    Google Scholar 

  33. Dymek CJ, Grossie DA, Fratini AV et al. (1989) Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride. J Mol Struct 213:25–34

    CAS  Google Scholar 

  34. Turner EA, Pye CC, Singer RD (2003) Use of ab initio calculations toward the rational design of room temperature ionic liquids. J Phys Chem A 107:2277–2288

    CAS  Google Scholar 

  35. Reichert WM, Holbrey JD, Swatloski RP et al. (2007) Solid-state analysis of low-melting 1,3-dialkylimidazolium hexafluorophosphate salts (ionic liquids) by combined X-ray crystallographic and computational analyses. Cryst Growth Des 7:1106–1114

    CAS  Google Scholar 

  36. Matsumoto K, Hagiwara R (2007) Structural characteristics of alkylimidazolium-based salts containing fluoroanions. J Fluorine Chem 128:317–331

    CAS  Google Scholar 

  37. Xue H, Verma R, Shreeve JM (2006) Review of ionic liquids with fluorine-containing anions. J Flour Chem 127:159–176

    CAS  Google Scholar 

  38. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    CAS  Google Scholar 

  39. Choudhury AR, Winterton N, Steiner A et al. (2005) In situ crystallization of low-melting ionic liquids. J Am Chem Soc 127:16792–16793

    CAS  Google Scholar 

  40. Hasan M, Kozhevnikov IV, Siddiqui MRH et al. (2001) N, N-Dialkylimidazolium chloroplatinate(II), chloroplatinate(IV), and chloroiridate(IV) salts and an N-heterocyclic carbene complex of platinum(II): synthesis in ionic liquids and crystal structures. Inorg Chem 40:795–800

    CAS  Google Scholar 

  41. Matsumoto K, Hagiwara R, Yoshida R et al. (2004) Syntheses, structures and properties of 1-ethyl-3-methylimidazolium salts of fluorocomplex anions. Dalton Trans 144–149

    Google Scholar 

  42. Matsumoto K, Hagiwara R, Mazej Z et al. (2006) Crystal structures of frozen room temperature ionic liquids,1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6), determined by low-temperature X-ray diffraction. Solid State Sci 8:1250–1257

    CAS  Google Scholar 

  43. Luo H, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081

    CAS  Google Scholar 

  44. Armstrong JP, Hurst C, Jones RG et al. (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990

    CAS  Google Scholar 

  45. Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775

    CAS  Google Scholar 

  46. Dong K, Song Y, Liu X et al. (2012) Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B 116:1007–1017

    CAS  Google Scholar 

  47. Dong K, Zhang S, Wang D et al. (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782

    CAS  Google Scholar 

  48. Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed 48:3184–3186

    CAS  Google Scholar 

  49. Zhao W, Leroy FD, Heggen B et al. (2009) Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Am Chem Soc 131:15825–15833

    CAS  Google Scholar 

  50. Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989

    CAS  Google Scholar 

  51. Talaty ER, Raja S, Storhaug VJ et al. (2004) Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184

    CAS  Google Scholar 

  52. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    CAS  Google Scholar 

  53. Izvekov S, Violi A, Voth GA (2005) Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B Lett 109:17019–17024

    CAS  Google Scholar 

  54. Liu X, Zhou G, Zhang S (2008) Molecular dynamics simulation of acyclic guanidinium-based ionic liquids. Fluid Phase Equilibr 272:1–7

    CAS  Google Scholar 

  55. Mizuse K, Mikami N, Fujii A (2010) Infrared spectra and hydrogen-bonded network structures of large protonated water clusters H + (H2O)n (n = 20-200). Angew Chem Int Ed 49:10119–10122

    CAS  Google Scholar 

  56. Russina O, Triolo A, Gontrani L, Caminiti R (2012) Mesoscopic structural heterogeneities in room-temperature ionic liquids. J Phys Chem Lett 3:27–33

    CAS  Google Scholar 

  57. Hardacre C, McMath SEJ, Nieuwenhuyzen M, Bowron DT, Soper AK (2003) Liquid structure of 1,3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166

    Google Scholar 

  58. Canongia Lopes JN, Padua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B110:3330–3335

    Google Scholar 

  59. Triolo A, Russina O, Bleif H-J, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B111:4641–4644

    Google Scholar 

  60. Auon B, Goldbatch A, Gonzalez M, Kohara S, Rice DL, Saboungi M-L (2011) Nanoscale heterogeneity in alkyl-methylimidazolium bromide ionic liquids. J Chem Phys 134:104509

    Google Scholar 

  61. Zahn S, Uhlig F, Thar J et al. (2008) Intermolecuar forces in an ionic liquid ([Mmim]Cl) versus those in a typical salt (NaCl). Angew Chem Int Ed 47:3639–3641

    CAS  Google Scholar 

  62. Crowhurst L, Mawdsley PR, Perez-Arlandis JM et al. (2003) Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794

    CAS  Google Scholar 

  63. Hunt PA, Gould IR (2006) Structural characterization of the 1-butyl-3-methylimidazolium chloride ion pair using ab initio methods. J Phys Chem A 110:2269–2282

    CAS  Google Scholar 

  64. Abdul-Sada AK, Greenway AM, Hitchcock PB et al. (1986) Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc Chem Commun 1753–1754

    Google Scholar 

  65. Khupse ND, Kumar A (2010) Contrasting thermosolvatochromic trends in pyridinium-, pyrrolidinium-, and phosphonium-based ionic liquids. J Phys Chem B 114:376–381

    CAS  Google Scholar 

  66. Tokuda H, Tsuzuki S, Susan MBH et al. (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600

    CAS  Google Scholar 

  67. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297

    CAS  Google Scholar 

  68. Dieter KM, Dymek CJJ, Heimer NE et al. (1988) Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. J Am Chem Soc 110:2722–2726

    CAS  Google Scholar 

  69. Remsing RC, Wildin JL, Rapp AL et al. (2007) Hydrogen bonds in ionic liquids revisited:35/37Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621

    CAS  Google Scholar 

  70. Hardacre C, Holbrey JD, Mcmath SEJ et al. (2003) Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J Chem Phys 118:273–279

    CAS  Google Scholar 

  71. Heimer NE, Sesto RED, Meng Z et al. (2006) Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J Mol Liq 124:84–95

    CAS  Google Scholar 

  72. Holbrey JD, Reichert WM, Nieuwenhuyzen M et al. (2003) Liquid clathrate formation in ionic liquid–aromatic mixtures. Chem Commun 476–477

    Google Scholar 

  73. Hardacre C, Mcmath SEJ, Nieuwenhuyzen M et al. (2003) Liquid structure of 1, 3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166

    CAS  Google Scholar 

  74. Rijnberg E, Richter B, Thiele KH et al. (1998) A homologous series of homoleptic zinc bis(1,4-di-tert-butyl-1,4-diaza-1,3-butadiene) complexes: Kx[Zn(t-BuNCHCHN-t-Bu)2], Zn(t-BuNCHCHN-t-Bu)2, and [Zn(t-BuNCHCHN-t-Bu)2](OTf)x (x = 1, 2). Inorg Chem 37:56–63

    CAS  Google Scholar 

  75. Umebayashi Y, Fujimori T, Sukizaki T et al. (2005) Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J Phys Chem A 109:8976–8982

    CAS  Google Scholar 

  76. Roth C, Peppel T, Fumino K et al. (2010) The importance of hydrogen bonds for the structure of ionic liquids: single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region. Angew Chem Int Ed 49:10221–10224

    CAS  Google Scholar 

  77. Fumino K, Wulf A, Ludwig R (2008) Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed 47:8731–8734

    CAS  Google Scholar 

  78. Gjikaj M, Leye J-C, Xie T et al. (2010) Structural and spectroscopic elucidation of imidazolium and pyridinium based hexachloridophosphates and niobates. CrystEngComm 12:1474–1480

    CAS  Google Scholar 

  79. Deetlefs M, Hardacre C, Nieuwenhuyzen M et al. (2006) Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide. J Phys Chem B 110:12055–12061

    CAS  Google Scholar 

  80. Holbrey JD, Reichert WM, Rogers RD (2004) Crystal structures of imidazolium bis(trifluoromethanesulfonyl)-imide ‘ionic liquid’ salts: the first organic salt with a cis-TFSI anion conformation. Dalton Trans 2267–2271

    Google Scholar 

  81. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453

    CAS  Google Scholar 

  82. Shetty PH, Youngberg PJ, Kersten BR et al. (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography. J Chromatogr 411:61–79

    CAS  Google Scholar 

  83. Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819–6822

    CAS  Google Scholar 

  84. Geissler PL, Dellago C, Chandler D et al. (2001) Autoionization in liquid water. Science 291:2121–2124

    CAS  Google Scholar 

  85. Dong K, Zhang S (2012) Hydrogen bonds: a structural insight into ionic liquids. Chem Eur J 18:2748–2761

    CAS  Google Scholar 

  86. Downard A, Earle MJ, Hardacre C et al. (2004) Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem Mater 16:43–48

    CAS  Google Scholar 

  87. Berg RW, Deetlefs M, Seddon KR et al. (2005) Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 109:19018–19025

    CAS  Google Scholar 

  88. Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608

    CAS  Google Scholar 

  89. Canongia Lopes JN, Padua AH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335

    CAS  Google Scholar 

  90. Xiao D, Rajian JR, Cady A et al. (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B 111:4669–4677

    CAS  Google Scholar 

  91. Soutullo MD, Odom CI, Wicker BF et al. (2007) Reversible CO2 capture by unexpected plastic-, resin-, and gel-like ionic soft materials discovered during the combi-click generation of a TSIL library. Chem Mater 19:3581–3583

    CAS  Google Scholar 

  92. Huddleston JG, Willauer HD, Swatloski RP et al. (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 1765–1766

    Google Scholar 

  93. Holbrey JD, Lopez-Martin I, Rothenberg G et al. (2008) Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chem 10:87–92

    CAS  Google Scholar 

  94. Xie LL, Favre-Reguillon A, Wang XX et al. (2008) Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride. Green Chem 10:524–531

    CAS  Google Scholar 

  95. Domanska U, Pobudkowska A, Krolikowski M (2007) Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T = 298.15 K. Fluid Phase Equilibr 259:173–179

    CAS  Google Scholar 

  96. Zhang SG, Zhang QL, Zhang ZC (2004) Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res 43:614–622

    CAS  Google Scholar 

  97. Cao Y, Xing H, Yang Q et al. (2012) Separation of soybean isoflavone aglycone homologues by ionic liquid-based extraction. J Agric Food Chem 60:3432–3440

    CAS  Google Scholar 

  98. Dong K, Cao Y, Yang Q et al. (2012) Role of hydrogen bonds in ionic-liquid-mediated extraction of natural bioactive homologues. Ind Eng Chem Res 51:5299–5308

    CAS  Google Scholar 

  99. Anderson JL, Ding J, Welton T et al. (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    CAS  Google Scholar 

  100. Pinkert A, Marsh KN, Pang S et al. (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    CAS  Google Scholar 

  101. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    CAS  Google Scholar 

  102. Vispute TP, Zhang H, Sanna A et al. (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227

    CAS  Google Scholar 

  103. Swatloski RP, Spear SK, Holbrey JD et al. (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Google Scholar 

  104. Tan SSY, Macfarlane DR, Upfal J et al. (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    CAS  Google Scholar 

  105. Qin Y, Lu X, Sun N et al. (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    CAS  Google Scholar 

  106. Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608

    CAS  Google Scholar 

  107. Remsing RC, Swatloski RP, Rogers RD et al. (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a13C and35/37Cl NMR relaxation study on model systems. Chem Commun 28:1271–1273

    Google Scholar 

  108. Sun N, Rahman M, Qin Y et al. (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    CAS  Google Scholar 

  109. Liu H, Sale KL, Holmes BM et al. (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    CAS  Google Scholar 

  110. Garcia H, Ferreira R, Petkovic M et al. (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12:367–369

    CAS  Google Scholar 

  111. Jaeger DA, Tucker CE (1989) Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett 30:1785–1788

    CAS  Google Scholar 

  112. Aggarwal A, Lancaster NL, Sethi AR et al. (2002) The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem 4:517–520

    CAS  Google Scholar 

  113. Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:7315–7320

    CAS  Google Scholar 

  114. Yuan X, Zhang S, Liu J et al. (2007) Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilibr 257:195–200

    CAS  Google Scholar 

  115. Zhang S, Chen Y, Ren RX-F et al. (2005) Solubility of CO2 in sulfonate ionic liquids at high pressure. J Chem Eng Data 50:230–233

    CAS  Google Scholar 

  116. Blanchard LA, Hancu D, Beckman EJ et al. (1999) Green processing using ionic liquids and CO2. Nature 399:28–29

    Google Scholar 

  117. Huanga J, Riisager A, Wasserscheidb P et al. (2006) Reversible physical absorption of SO2 by ionic liquids. Chem Commun 38:4027–4029

    Google Scholar 

  118. Huang X, Margulis CJ, Li Y et al. (2005) Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim]+ [PF6]−. J Am Chem Soc 127:17842–17851

    CAS  Google Scholar 

  119. Scovazzo P, Camper D, Kieft J et al. (2004) Regular solution theory and CO2 gas solubility in room-temperature ionic liquids. Ind Eng Chem Res 43:6855–6860

    CAS  Google Scholar 

  120. Kerlé D, Ludwig R, Geiger A et al. (2009) Temperature dependence of the solubility of carbon dioxide in imidazolium-based ionic liquids. J Phys Chem B 113:12727–12735

    Google Scholar 

  121. Paschek D, Köddermann T, Ludwig R (2008) The solvophobic solvation and interaction of small apolar particales in imidazolium-based ionic liquids. Phys Rev Lett 100:115901–115904

    Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Projects of International Cooperation and Exchanges NSFC (No. 21210006, 21336002 and 21376242), Beijing Natural Science Foundation (No.2131005) and National High Technology Research and Development Program of China (863 Program) (No. 2012AA063001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingmei Lu or Suojiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, K., Wang, Q., Lu, X., Zhou, Q., Zhang, S. (2014). Structure, Interaction and Hydrogen Bond. In: Zhang, S., Wang, J., Lu, X., Zhou, Q. (eds) Structures and Interactions of Ionic Liquids. Structure and Bonding, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38619-0_1

Download citation

Publish with us

Policies and ethics