Skip to main content

Comparison of Time-Frequency Feature Extraction Methods for EEG Signals Classification

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7895))

Included in the following conference series:

Abstract

Biomedical signal analysis can assist the diagnostic process for each neurological dysfunction. At that time the diagnostic tool continues to evolve, which is related to the development of both technological and innovative solutions proposed by scientists. One of possible solutions for automatic EEG analysis is to use modern signal processing tools, which are able to give a time-frequency representation of a signal. This paper presents a comparison of methods such as the discrete wavelet transform, the matching pursuit algorithm, and the S transform for feature extraction and then classification of neurological disorders. The research was carried out using real EEG recordings of epileptic patients as well as healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R.O., Hart, P.E., Stork, D.H.: Pattern Classification, 2nd edn. Wiley Interscience (2000)

    Google Scholar 

  2. Faul, S., Boylan, G., Connolly, S.: An evaluation of automated neonatal seizure detection methods. Clin. Neurophysiol. 116, 1533–1541 (2005)

    Article  Google Scholar 

  3. Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)

    Article  Google Scholar 

  4. James, C.J., Jones, R.D., Bones, P.J., Carroll, G.J.: Detection of epileptiform discharges in the eeg by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages. Clin. Neurophysiol. 12, 2049–2063 (1999)

    Article  Google Scholar 

  5. Kahn, Y., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)

    Article  Google Scholar 

  6. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  7. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  8. McSharry, P., He, T., Smith, L.: Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings. Med. Biol. Eng. Comput. 40, 447–461 (2002)

    Article  Google Scholar 

  9. Patan, K., Rutkowski, G.: Analysis and classification of eeg data: An evaluation of methods. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 310–317. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: The s transform. IEEE Trans. Signal Processing 44(4), 998–1001 (1996)

    Article  Google Scholar 

  11. Świercz, E.: Classification in the gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution. J. Applied Mathematics and Computer Science 20(1), 135–147 (2010)

    Google Scholar 

  12. Übeyli, E.D.: Combined neural network model employing wavelet coefficients for eeg signals classification. Digital Signal Processing 19, 297–308 (2009)

    Article  Google Scholar 

  13. Woźniak, M., Krawczyk, B.: Combined classifier based on feature space partitioning. J. Applied Mathematics and Computer Science 22(4), 855–866 (2012)

    Google Scholar 

  14. Yeung, N., Bogacz, R., Holroyd, C.B., Cohen, J.D.: Detection of synchronized oscillations in the electroencephalogram: An evaluation of methods. Psychophysiology 41, 822–832 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rutkowski, G., Patan, K., Leśniak, P. (2013). Comparison of Time-Frequency Feature Extraction Methods for EEG Signals Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics