Skip to main content

Neural Interfaces as Tools for Studying Brain Plasticity

  • Chapter
  • First Online:

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 4))

Abstract

The restoration and rehabilitation of human movement are of great interest to the field of neural interfaces, i.e. devices that utilize neural activity to control computers, limb prosthesis or powered exoskeletons. Since motor deficits are commonly associated with spinal cord injury, brain injury, limb loss, and neurodegenerative diseases, there is a need to investigate new potential therapies to restore or rehabilitate movement in such clinical populations. While the feasibility of neural interfaces for upper and lower limbs has been demonstrated in studies in human and nonhuman primates, their use in investigating brain plasticity and neural mechanisms as result of clinical intervention has not been investigated. In this chapter, we address this gap and present examples of how neural interfaces can be deployed to study changes in cortical dynamics during motor learning that can inform about neural mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Birbaumer (2003) Breaking the silence: brain-computer interfaces (BCI) for communications and motor control. Psychophysiology 43 (2006):517–532

    Google Scholar 

  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from non-invasive electroencephalographic signals. J Neurosci 30(9):3432–3437

    Article  Google Scholar 

  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Fast attainment of computer cursor control with noninvasively acquired brain signals. J Neural Eng 8(3):036010 (PMID: 21493978)

    Google Scholar 

  • Bradberry TJ, Rong F, Contreras-Vidal JL (2009) Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Neuroimage 47(4):1691–1700

    Article  Google Scholar 

  • Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MAL (2009) Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Frontiers Integr Neurosci 3:1–19. doi:10.3389/neuro.07.003.2009

    Google Scholar 

  • Flint RD, Ethier C, Oby ER, Miller LE, Slutzky MW (2012) Local field potentials allow accurate decoding of muscle activity. J Neurophysiol 108(1):18–24

    Article  Google Scholar 

  • Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biology 7(7):e1000153. doi:10.1371/journal.pbio.1000153

  • Harvey RL (2009) Improving poststroke recovery: neuroplasticity and task-oriented training. Curr Treat Options Cardiovasc Med 11(3):251–259

    Article  Google Scholar 

  • Hinterberger T, Veit R, Wilhelm B, Weiskopf N, Vatine JJ, Birbaumer N (2005) Neuronal mechanisms underlying control of a brain–computer interface. Eur J Neurosci 21(11):3169–3181

    Article  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Google Scholar 

  • Hömberg V (2013) Neurorehabilitation approaches to facilitate motor recovery. Handb Clin Neurol 110:161–173

    Article  Google Scholar 

  • Ifft PJ, Lebedev MA, Nicolelis MA (2012) Reprogramming movements: extraction of motor intentions from cortical ensemble activity when movement goals change. Front Neuroeng 5:16

    Article  Google Scholar 

  • Kasashima Y, Fujiwara T, Matsushika Y, Tsuji T, Hase K, Ushiyama J, Ushiba J, Liu M (2012) Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Exp Brain Res 221(3):263–268

    Article  Google Scholar 

  • Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29(9):536–546

    Google Scholar 

  • Lo YL (2007) The role of electrophysiology in the diagnosis and management of cervical spondylotic myelopathy. Ann Acad Med Singapore 36(11):886–893

    Google Scholar 

  • McDonald JW 3rd, Sadowsky CL, Stampas A (2012) The changing field of rehabilitation: optimizing spontaneous regeneration and functional recovery. Handb Clin Neurol 109:317–336

    Article  Google Scholar 

  • Mehrholz J, Pohl M (2012) Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med 44(3):193–199

    Article  Google Scholar 

  • Mirabella G (2012) Volitional inhibition and brain–machine interfaces: a mandatory wedding. Front Neuroeng 5:20

    Article  Google Scholar 

  • Presacco A, Forrester L, Contreras-Vidal JL (2012) Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. IEEE Trans Neural Syst Rehabil Eng 20(2):212–219

    Article  Google Scholar 

  • Presacco A, Goodman R, Forrester L, Contreras-Vidal JL (2011) Neural decoding of treadmill walking from non-invasive electroencephalographic signals. J Neurophysiol 106:1875–1887

    Article  Google Scholar 

  • Reinkensmeyer DJ, Boninger ML (2012) Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil 9:17

    Article  Google Scholar 

  • Rossini PM, Altamura C, Ferreri F, Melgari JM, Tecchio F, Tombini M, Pasqualetti P, Vernieri F (2007) Neuroimaging experimental studies on brain plasticity in recovery from stroke. Eura Medicophys 43(2):241–254

    Google Scholar 

  • Roy A, Krebs HI, Bever CT, Forrester LW, Macko RF, Hogan N (2011) Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. J Neurophysiol 105(5):2132–2149

    Article  Google Scholar 

  • Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, Sathian K, Nichols-Larsen DS, Wolf SL, Good DC, Wittenberg GF (2008) Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair 22(5):505–513

    Article  Google Scholar 

  • Taub E, Uswatte G, Elbert T (2002) New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 3:228–236

    Article  Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    Google Scholar 

  • Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, Brose SW, Schwartz AB, Boninger ML, Weber DJ (2010) Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am 21(1):157–178

    Article  MATH  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  • Yang S, McGinnity TM, Wong-Lin K (2012) Adaptive proactive inhibitory control for embedded real-time applications. Front Neuroeng 5:10

    Article  Google Scholar 

  • Yozbatiran N, Berliner J, O'Malley MK, Pehlivan AU, Kadivar Z, Boake C, Francisco GE (2012) Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report. J Rehabil Med 44(2):186–188

    Google Scholar 

  • Zollo L, Gallotta E, Guglielmelli E, Sterzi S (2011) Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke. Eur J Phys Rehabil Med 47(2):223–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aranceta-Garza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aranceta-Garza, A. et al. (2014). Neural Interfaces as Tools for Studying Brain Plasticity. In: Pons, J., Torricelli, D. (eds) Emerging Therapies in Neurorehabilitation. Biosystems & Biorobotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38556-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38556-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38555-1

  • Online ISBN: 978-3-642-38556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics