Skip to main content

Emerging Rehabilitation in Cerebral Palsy

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 4))

Abstract

Cerebral Palsy (CP) is the most frequent disability affecting children. Although the effects of CP are diverse this chapter focuses on the impaired motor control of children suffering from spastic diplegia, particularly in the lower limb. The chapter collects the most relevant techniques that are used or might be useful to overcome the current limitations existing in the diagnosis and rehabilitation of CP. Special emphasis is placed on the role that emerging technologies can play in this field. Knowing in advance the type and site of brain injury could assist the clinician in selecting the appropriate therapy. In this context, neuroimaging techniques are being recommended as an evaluation tool in children with CP; we describe a variety of imaging technologies such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), etc. But creating new knowledge in itself is not enough; there must be a transfer from progress through research to advances in the clinical field. The classic therapeutic approach of CP thus hampers the optimal rehabilitation of the targeted component. Traditional therapies may be optimized if complemented with treatments. We try to collect a wide range of emerging technologies and provide some criteria to select the adequate technology based on the characteristics of the neurological injury. For example, exoskeleton based over-ground gait training is suggested to be more effective than treadmill-based gait training. So, we suggest a new point of view combining different technologies in order to provide the foundations of a rational design of the individual rehabilitation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardo J, Kammann H, Hoon AH (2004) Neuroimaging in cerebral palsy. J Pediatr 145(2 Suppl):S19–S27

    Google Scholar 

  • Ajiboye AB, Weir RF (2009) Muscle synergies as a predictive framework for the EMG patterns of new hand postures. J Neural Eng 6(3):036004

    Article  Google Scholar 

  • Alexander MA, Matthews DJ (2009) Pediatric rehabilitation: principles and practice. Demos Medical Publishing

    Google Scholar 

  • Banz R, Bolliger M, Colombo G, Dietz V, Lünenburger L (2008) Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther 88(10):1135–1145

    Article  Google Scholar 

  • Barakat N, Mohamed FB, Hunter LN, Shah P, Faro SH, Samdani AF, Finsterbusch J, Betz R, Gaughan J, Mulcahey MJ (2012) Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence. Am J Neuro Radiol 33(6):1127–1133

    Article  Google Scholar 

  • Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D (2005) Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 47(8):571–576

    Article  Google Scholar 

  • Benini R, Shevell MI (2012) Updates in the treatment of spasticity associated with cerebral palsy. Curr Treat Opt Neurol 14(6):650–659

    Google Scholar 

  • Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A (2010) Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol: Off J Eur Paediatr Neurol Soc 14(6):496–502

    Article  Google Scholar 

  • Brehm M-A, Harlaar J, Schwartz M (2008) Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med: Off J UEMS Eur Board Phys Rehabil Med 40(7):529–534

    Google Scholar 

  • Brunoni AR, Boggio PS, Fregni F (2008) Can the ‘yin and yang’ BDNF hypothesis be used to predict the effects of rTMS treatment in neuropsychiatry? Med Hypotheses 71(2):279–282

    Article  Google Scholar 

  • Brütsch K, Koenig A, Zimmerli L, Mérillat-Koeneke S, Riener R, Jäncke L, van Hedel HJA, Meyer-Heim A (2011) Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J Rehabil Med: Off J UEMS Eur Board of Phys Rehabil Med 43(6):493–499

    Google Scholar 

  • Cabeza R, Kingstone A (2006) Handbook of functional neuroimaging of cognition, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Calautti C, Baron J-C (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke J of Cereb Circ 34(6):1553–1566

    Article  Google Scholar 

  • Cheung VCK, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E (2009) Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 106(46):19563–19568

    Article  Google Scholar 

  • Chi RP, Snyder AW (2011) Facilitate insight by non-invasive brain stimulation. PLoS One 6(2):e16655

    Article  Google Scholar 

  • Cioni G, Sales B, Paolicelli PB, Petacchi E, Scusa MF, Canapicchi R (1999) MRI and clinical characteristics of children with hemiplegic cerebral palsy. Neuropediatrics 30(5):249–255

    Article  Google Scholar 

  • D’Agati D, Bloch Y, Levkovitz Y, Reti I (2010) rTMS for adolescents: safety and efficacy considerations. Psychiatr Res 177(3):280–285

    Article  Google Scholar 

  • Dellon B, Matsuoka Y (2007) Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):30–34

    Article  Google Scholar 

  • Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 2011:1–11

    Article  Google Scholar 

  • Dodd KJ, Foley S (2007) Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol 49(2):101–105

    Article  Google Scholar 

  • Emken JL, Bobrow JE, Reinkensmeyer DJ (2009) Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005, vol 6, pp 307–312

    Google Scholar 

  • Eyre JA (2007) Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev 31(8):1136–1149

    Google Scholar 

  • Field-Fote EC, Lindley SD, Sherman AL (2005) Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurolog Phys Ther 29(3):127–137

    Article  Google Scholar 

  • Gallego JA, Rocon E, Ibanez J, Dideriksen JL, Koutsou AD, Paradiso R, Popovic MB, Belda-Lois JM, Gianfelici F, Farina D, Popovic DB, Manto M, D’Alessio T, Pons JL (2011) A soft wearable robot for tremor assessment and suppression. In: 2011 IEEE international conference on robotics and automation, pp 2249–2254

    Google Scholar 

  • Granziera C, Ay H, Koniak SP, Krueger G, Sorensen AG (2012) Diffusion tensor imaging shows structural remodeling of stroke mirror region: results from a pilot study. Eur Neurol 67(6):370–376

    Article  Google Scholar 

  • Hayek SM, Jasper JF, Deer TR, Narouze SN (2009) Occipital neurostimulation-induced muscle spasms: implications for lead placement. Pain Phys 12(5):867–876

    Google Scholar 

  • Heinen F, Kirschner J, Fietzek U, Glocker FX, Mall V, Korinthenberg R (1999) Absence of transcallosal inhibition in adolescents with diplegic cerebral palsy. Muscle Nerve 22(2):255–257

    Article  Google Scholar 

  • Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6:21

    Article  Google Scholar 

  • Holmström L, Vollmer B, Tedroff K, Islam M, Persson JKE, Kits A, Forssberg H, Eliasson A-C (2010) Hand function in relation to brain lesions and corticomotor-projection pattern in children with unilateral cerebral palsy. Dev Med Child Neurol 52(2):145–152

    Article  Google Scholar 

  • Holt RL, Mikati MA (2011) Care for child development: basic science rationale and effects of interventions. Pediatr Neurol 44(4):239–253

    Article  Google Scholar 

  • Hornby TG, Zemon DH, Campbell D (2005) Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther 85(1):52–66

    Google Scholar 

  • Hoyer EH, Celnik PA (2011) Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci 29(6):395–409

    Google Scholar 

  • Jiang N, Falla D, D’Avella A, Graimann B, Farina D (2010) Myoelectric control in neurorehabilitation. Crit Rev Biomed Eng 38(4):381–391

    Article  Google Scholar 

  • Johnston MV (2009) Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev 15(2):94–101

    Google Scholar 

  • Kesar TM, Sawaki L, Burdette JH, Cabrera MN, Kolaski K, Smith BP, O’Shea TM, Koman LA, Wittenberg GF (2012) Motor cortical functional geometry in cerebral palsy and its relationship to disability. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol 123(7):1383–1390

    Google Scholar 

  • Kollen BJ, Lennon S, Lyons B, Wheatley-Smith L, Scheper M, Buurke JH, Halfens J, Geurts ACH, Kwakkel G (2009) The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke J Cereb Circ 40(4):e89–e97

    Article  Google Scholar 

  • Korzeniewski SJ, Birbeck G, DeLano MC, Potchen MJ, Paneth N (2008) A systematic review of neuroimaging for cerebral palsy. J Child Neurol 23(2):216–227

    Article  Google Scholar 

  • Kułak W, Sobaniec W, Kuzia J-S, Boćkowski L (2006) Neurophysiologic and neuroimaging studies of brain plasticity in children with spastic cerebral palsy. Exp Neurol 198(1):4–11

    Article  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    Google Scholar 

  • Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang G-Z (2011) Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage 54(4):2922–2936

    Article  Google Scholar 

  • Liepert J, Bauder H, Miltner WHR, Taub E, Weiller C (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31(6):1210–1216

    Article  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224(4):591–605

    Article  Google Scholar 

  • Miller J, McKinstry R, Mukherjee P, Philip J, Neil J (2003) Pictorial essay: diffusion tensor imaging of normal brain maturation. A guide to structural development and myelination. AJR 180:851–859

    Google Scholar 

  • Milot M-H, Cramer SC (2008) Biomarkers of recovery after stroke. Curr Opin Neurol 21(6):654–659

    Article  Google Scholar 

  • Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 31(4):433–437

    Article  Google Scholar 

  • Mitchell L, Ziviani J, Oftedal S, Boyd R (2012) The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev Med Child Neurol 54(7):667–671

    Article  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage 14(5):1186–1192

    Article  Google Scholar 

  • Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med 14(2):330–346

    Google Scholar 

  • Mulcahey MJ, Samdani A, Gaughan J, Barakat N, Faro S, Betz RR, Finsterbusch J, Mohamed FB (2012) Diffusion tensor imaging in pediatric spinal cord injury: preliminary examination of reliability and clinical correlation. Spine 37(13):E797–E803

    Article  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3, no. 2000):633–639

    Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223

    Article  Google Scholar 

  • Parsons TD, Rizzo AA, Rogers S, York P (2009) Virtual reality in paediatric rehabilitation: a review. Dev Neurorehabil 12(4):224–238

    Article  Google Scholar 

  • Patritti BL, Sicari M, Deming LC, Romaguera F (2010) The role of augmented feedback in pediatric robotic-assisted gait training : a case series. Technol Disabil 22:215–227

    Google Scholar 

  • Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R (2012) Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil 9:65

    Article  Google Scholar 

  • Pilato F, Dileone M, Capone F, Profice P, Caulo M, Battaglia D, Ranieri F, Oliviero A, Florio L, Graziano A, Di Rocco C, Massimi L, Di Lazzaro V (2009) Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient. A TMS and fMRI study. Epilepsy Res 85(2–3):243–251

    Article  Google Scholar 

  • Qiu Q, Ramirez DA, Saleh S, Fluet GG, Parikh HD, Kelly D, Adamovich SV (2009) The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J Neuroeng Rehabil 6:40. doi:10.1186/1743-0003-6-40

  • Qiu M, Darling WG, Morecraft RJ, Ni CC, Rajendra J, Butler AJ (2011) White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke. Neurorehabil Neural Repair 25(3):275–284

    Google Scholar 

  • Radlinska B, Ghinani S, Leppert IR, Minuk J, Pike GB, Thiel A (2010) Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke. Neurology 75(12):1048–1054

    Article  Google Scholar 

  • Raya R, Rocon E, Ceres R, Pajaro M (2012) A mobile robot controlled by an adaptive inertial interface for children with physical and cognitive disorders. In: 2012 IEEE international conference on technologies for practical robot applications (TePRA), pp 151–156

    Google Scholar 

  • Rha D, Chang WH, Kim J, Sim EG, Park ES (2012) Comparing quantitative tractography metrics of motor and sensory pathways in children with periventricular leukomalacia and different levels of gross motor function. Neuroradiology 54(6):615–621

    Article  Google Scholar 

  • Riener R, Frey M, Bernhardt M, Nef T, Colombo G (2005) Human-centered rehabilitation robotics. In: 9th international conference on rehabilitation robotics. ICORR 2005, pp 319–322

    Google Scholar 

  • Riener R, Lünenburger L, Colombo G (2006) Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev 43(5):679

    Article  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92

    Article  Google Scholar 

  • Rossini PM, Caltagirone C, Castriota-Scanderbeg A, Cicinelli P, Del Gratta C, Demartin M, Pizzella V, Traversa R, Romani GL (1998) Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. NeuroReport 9(9):2141–2146

    Article  Google Scholar 

  • Safavynia SA, Torres-Oviedo G, Ting LH (2011) Muscle Synergies: implications for clinical evaluation and rehabilitation of movement. Topics Spinal cord Inj Rehabil 17(1):16–24

    Article  Google Scholar 

  • Shevell MI, Dagenais L, Hall N (2009) The relationship of cerebral palsy subtype and functional motor impairment: a population-based study. Dev Med Child Neurol 51(11):872–877

    Article  Google Scholar 

  • Shimony JS, Lawrence R, Neil JJ, Inder TE (2008) Imaging for diagnosis and treatment of cerebral palsy. Clin Obstet Gynecol 51(4):787–799

    Article  Google Scholar 

  • Smith M (2011) Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Trans Ser A, Math Phys Eng Sci 369(1955):4452–4469

    Article  Google Scholar 

  • Song S, Sandrini M, Cohen LG (2011) Modifying somatosensory processing with non-invasive brain stimulation. Restor Neurol Neurosci 29(6):427–437

    Google Scholar 

  • Song F, Zhang F, Yin D-Z, Hu Y-S, Fan M-X, Ni H–H, Nan X-L, Cui X, Zhou C-X, Huang C-S, Zhao Q, Ma L-H, Xu Y-M, Xia Q-J (2012) Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients. J Int Med Res 40(1):126–133

    Article  Google Scholar 

  • Sotak CH (2002) The role of diffusion tensor imaging in the evaluation of ischemic brain injury—a review. NMR Biomed 15(7–8):561–569

    Google Scholar 

  • Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E (2010) Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med: Off J UEMS Eur Board Phys Rehabil Med 42(6):520–526

    Google Scholar 

  • Towsley K, Shevell MI, Dagenais L (2011) Population-based study of neuroimaging findings in children with cerebral palsy. Eur J Paediatr Neurol; Off J Eur Paediatr Neurol Soc 15(1):29–35

    Article  Google Scholar 

  • Utsunomiya H (2011) Diffusion MRI abnormalities in pediatric neurological disorders. Brain Dev 33(3):235–242

    Article  Google Scholar 

  • Valle AC, Dionisio K, Pitskel NB, Pascual-Leone A, Orsati F, Ferreira MJL, Boggio PS, Lima MC, Rigonatti SP, Fregni F (2007) Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev Med Child Neurol 49(7):534–538

    Article  Google Scholar 

  • van den Noort JC, Scholtes VA, Becher JG, Harlaar J (2010) Evaluation of the catch in spasticity assessment in children with cerebral palsy. Arch Phys Med Rehabil 91(4):615–623

    Article  Google Scholar 

  • van der Linden M (2012) Functional electrical stimulation in children and adolescents with cerebral palsy. Dev Med Child Neurol 54(11):972

    Article  MathSciNet  Google Scholar 

  • Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, Burbaud P, Welter M-L, Xie-Brustolin J, Braga M-CC, Ardouin C, Czernecki V, Klinger H, Chabardes S, Seigneuret E, Mertens P, Cuny E, Navarro S, Cornu P, Benabid A-L, Le Bas J-F, Dormont D, Hermier M, Dujardin K, Blond S, Krystkowiak P, Destée A, Bardinet E, Agid Y, Krack P, Broussolle E, Pollak P (2009) Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol 8(8):709–717

    Article  Google Scholar 

  • Willoughby KL, Dodd KJ, Shields N, Foley S (2010) Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil 91(3):333–339

    Article  Google Scholar 

  • Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115(4):997–1003

    Article  Google Scholar 

  • Wittenberg GF (2009) Motor mapping in cerebral palsy. Dev Med Child Neurol 51(suppl 4):134–139

    Article  Google Scholar 

  • Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng: Publ IEEE Eng Med Biol Soc 16(3):286–297

    Article  Google Scholar 

  • Wright PA, Durham S, Ewins DJ, Swain ID (2012) Neuromuscular electrical stimulation for children with cerebral palsy: a review. Arch Dis Child 97(4):364–371

    Google Scholar 

  • Yang Q, Tress BM, Barber PA, Desmond PM, Darby DG, Gerraty RP, Li T, Davis SM (1999) Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke; J Cereb Circ 30(11):2382–2390

    Article  Google Scholar 

  • Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS (2008) Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics 121(3):547–554

    Article  Google Scholar 

  • Yonclas PP, Nadler RR, Moran ME, Kepler KL, Napolitano E (2006) Orthotics and assistive devices in the treatment of upper and lower limb osteoarthritis: an update. Am J Phys Med Rehabil/Assoc Acad Physiatr 85(11 Suppl):S82–S97

    Article  Google Scholar 

  • You SH, Jang SH, Kim Y-H, Hallett M, Ahn SH, Kwon Y-H, Kim JH, Lee MY (2005) Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke; J Cereb Circ 36(6):1166–1171

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was partially based on a presentation titled “Can children with cerebral palsy learn how to walk from a robot?” presented by Dr. Paolo Bonato at the Summer School on Neurorehabilitation 2012 in Zaragoza, Spain. The authors would like to thank Dr. Bonato for the insights and comments provided over several discussion sessions following said presentation. Furthermore we would like to thank Dr. Diego Torricelli for his constructive feedback throughout the revision process of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lambrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lambrecht, S., Urra, O., Grosu, S., Nombela, S.P. (2014). Emerging Rehabilitation in Cerebral Palsy. In: Pons, J., Torricelli, D. (eds) Emerging Therapies in Neurorehabilitation. Biosystems & Biorobotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38556-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38556-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38555-1

  • Online ISBN: 978-3-642-38556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics